Enhanced single-fundamental LP01 mode operation of 650-nm GaAs-based GaInP/AlGaInP quantum-well VCSELs
暂无分享,去创建一个
Robert P. Sarzała | Łukasz Piskorski | R. Sarzała | Ł. Piskorski | W. Nakwaski | Włodzimierz Nakwaski
[1] E. F. Steigmeier,et al. Electron and Phonon Scattering in GaAs at High Temperatures , 1965 .
[2] S. Yoon,et al. Electrical properties of silicon- and beryllium-doped GaInP and (AlGa)InP grown by solid source molecular beam epitaxy , 2002 .
[3] M. Ikeda,et al. Selenium and zinc doping in Ga0.5In0.5P and (Al0.5Ga0.5)0.5In0.5P grown by metalorganic chemical vapor deposition , 1989 .
[4] G. Stillman,et al. Determination of the Band Offset of GalnP- GaAs and AllnP- GaAs Quantum Wells by Optical Spectroscopy , 1997 .
[5] R. J. Cobley,et al. Modeling multiple quantum barrier effects and reduced electron leakage in red-emitting laser diodes , 2006 .
[6] P. Smowton,et al. S-shaped negative differential resistance in 650 nm quantum well laser diodes , 2001 .
[7] P. Rochon,et al. Photovoltaic effect and interband magneto-optical transitions in InP , 1975 .
[8] G. R. Hadley,et al. Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers , 1997 .
[9] Robert P. Sarzała,et al. Optimization of 1.3 µm GaAs-based oxide-confined (GaIn)(NAs) vertical-cavity surface-emitting lasers for low-threshold room-temperature operation , 2004 .
[10] J. Teng,et al. 650-nm AlGaInP multiple-quantum-well lasers grown by metalorganic chemical vapor deposition using tertiarybutylphosphine , 2003 .
[11] W. Nakwaski,et al. Principles of VCSEL designing , 2007 .
[12] David J. Dunstan,et al. Determination of the band structure of disordered AlGaInP and its influence on visible-laser characteristics , 1995 .
[13] Hans Wenzel,et al. The effective frequency method in the analysis of vertical-cavity surface-emitting lasers , 1997 .
[14] R. Sarzała. Physical analysis of an operation of GalnAs/GaAs quantum-well vertical-cavity surface-emitting diode lasers emitting in the 1.3-žm wavelength range , 2005 .
[15] R. Kúdela,et al. Zn-Doped InGaP Grown by the LP- MOCVD , 1997 .
[16] Robert P. Sarzała,et al. Self-consistent model of 650 nm GaInP/AlGaInP quantum-well vertical-cavity surface-emitting diode lasers , 2007 .
[17] H. Sigg,et al. The refractive index of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling , 2000 .
[18] Electroreflectance Study of (AlxGa1-x)0.5In0.5P Alloys , 1996 .
[19] Joachim Piprek,et al. Material parameters of quaternary III - V semiconductors for multilayer mirrors at wavelength , 1996 .
[20] K. Hellwege,et al. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology , 1967 .
[21] S. Sweeney,et al. Self-heating effects in red (665 nm) VCSELs , 2001 .
[22] Y. Koike,et al. Propagating mode analysis and design of waveguide parameters of GI POF for very short-reach network use , 2005, IEEE Photonics Technology Letters.
[23] Randall S. Geels,et al. Drift leakage current in AlGaInP quantum-well lasers , 1993 .
[24] Andrea Knigge,et al. High-efficiency AlGaInP/AlGaAs vertical-cavity surface-emitting lasers with 650 nm wavelength , 2003 .
[25] R. Sarzała,et al. Designing strategy to enhance mode selectivity of higher-output oxide-confined vertical-cavity surface-emitting lasers , 2005 .
[26] S. Adachi. GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .
[27] R. Bechmann,et al. Numerical data and functional relationships in science and technology , 1969 .
[28] Jerry R. Meyer,et al. Band parameters for III–V compound semiconductors and their alloys , 2001 .
[29] Jean-Louis Oudar,et al. Thermal conductance of laterally-wet-oxidised GaAs/AlxOy Bragg reflectors , 2006 .
[30] Marek Osinski,et al. Thermal analysis of GaAs-AlGaAs etched-well surface-emitting double-heterostructure lasers with dielectric mirrors , 1993 .
[31] Wlodzimierz Nakwaski,et al. Thermal conductivity of binary, ternary, and quaternary III‐V compounds , 1988 .