Growth, Cathodoluminescence and Field Emission of ZnS Tetrapod Tree‐like Heterostructures

We report the growth mechanism, cathodoluminescence and field emission of dual phase ZnS tetrapod tree‐like heterostructures. This novel heterostructures consist of two phases: zinc blende for the trunk and hexagonal wurtzite for the branch. Direct evidence is presented for the polarity induced growth of tetrapod ZnS trees through high‐resolution electron microscopy study, demonstrating that Zn‐terminated ZnS (111)/(0001) polar surface is chemically active and S‐terminated (${\bar 1}$${\bar 1}$${\bar 1}$)/(000$\bar 1$) polar surface is inert in the growth of tetrapod ZnS trees. Two strong UV emissions centered at 3.68 and 3.83 eV have been observed at room temperature, which are attributed to the bandgap emissions from the zinc blende trunk and hexagonal wurtzite branch, indicating that such structures can be used as unique electromechanical and optoelectronic components in potential light sources, laser and light emitting display devices. In addition, the low turn‐on field (2.66 Vµm−1), high field‐enhancement factor (over 2600), large current density (over 30 mAcm−2 at a macroscopic field of 4.33 Vµm−1) and small fluctuation (∼1%) further indicate the availability of ZnS tetrapod tree‐like heterostructures for field emission panel display. This excellent field‐emission property is attributed to the specific crystallographic feature with high crystallinity and cone‐shape patterned branch with nanometer‐sized tips. Such a structure may optimize the FE properties and make a promising field emitter.

[1]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[2]  Qingliang Liao,et al.  Growth mechanism and optical properties of ZnS nanotetrapods , 2007 .

[3]  C. Zhi,et al.  Ultrafine ZnS Nanobelts as Field Emitters , 2007 .

[4]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.

[5]  Y. Bando,et al.  Crystal orientation-ordered ZnS nanobelt quasi-arrays and their enhanced field-emission. , 2007, Chemical communications.

[6]  Xihong Chen,et al.  Field emission and photoluminescence characteristics of ZnS nanowires via vapor phase growth , 2007 .

[7]  Zhong Lin Wang,et al.  Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires , 2007 .

[8]  F. Bechstedt,et al.  The coherent {100} and {110} interfaces between rocksalt-PbTe and zincblende-CdTe , 2007 .

[9]  G. Shen,et al.  High-symmetry ZnS hepta- and tetrapods composed of assembled ZnS nanowire arrays , 2007 .

[10]  A. Baczewski,et al.  Electronic and structural characteristics of zinc-blende wurtzite biphasic homostructure GaN nanowires. , 2007, Nano letters.

[11]  Zhigang Chen,et al.  Synthesis and photoluminescence of tetrapod ZnO nanostructures , 2007 .

[12]  M. Naughton,et al.  Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission , 2006 .

[13]  W. Cai,et al.  Well-aligned zinc sulfide nanobelt arrays : Excellent field emitters , 2006 .

[14]  K. Chattopadhyay,et al.  Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique , 2006 .

[15]  Zhong Lin Wang,et al.  Hierarchical structured nanohelices of ZnS. , 2006, Angewandte Chemie.

[16]  Zhong Lin Wang,et al.  Periodically twinned nanowires and polytypic nanobelts of ZnS: The role of mass diffusion in vapor-liquid-solid growth. , 2006, Nano letters.

[17]  Rong Zhang,et al.  Experimental evidence of an octahedron nucleus in ZnS tetrapods. , 2006, Small.

[18]  Xia Fan,et al.  Dart-shaped tricrystal ZnS nanoribbons. , 2006, Angewandte Chemie.

[19]  A. P. Alivisatos,et al.  Erratum: Femtosecond spectroscopy of carrier relaxation dynamics in type II CdSe/CdTe tetrapod heteronanostructures (Nano Letters (2005) 5 (1809)) , 2005 .

[20]  J. Wu,et al.  Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation , 2005 .

[21]  A. P. Alivisatos,et al.  Femtosecond spectroscopy of carrier relaxation dynamics in type II CdSe/CdTe tetrapod heteronanostructures. , 2005, Nano letters.

[22]  M. Weinert,et al.  Selected growth of cubic and hexagonal GaN epitaxial films on polar MgO(111). , 2005, Physical review letters.

[23]  Zhigang Chen,et al.  An array of Eiffel-tower-shape AlN nanotips and its field emission properties , 2005 .

[24]  Young Woon Kim,et al.  Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. , 2005, Journal of the American Chemical Society.

[25]  Q. Wan,et al.  Stable field emission from tetrapod-like ZnO nanostructures , 2004 .

[26]  Lars Samuelson,et al.  Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events , 2004, Nature materials.

[27]  Zhong Lin Wang,et al.  Formation of piezoelectric single-crystal nanorings and nanobows. , 2004, Journal of the American Chemical Society.

[28]  Yong Ding,et al.  Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts , 2004, Science.

[29]  Y. Bando,et al.  Design and Fabrication of BN‐Sheathed ZnS Nanoarchitectures , 2004 .

[30]  Y. Bando,et al.  Nanocable-aligned ZnS tetrapod nanocrystals. , 2003, Journal of the American Chemical Society.

[31]  J. Zuo,et al.  Induced growth of asymmetric nanocantilever arrays on polar surfaces. , 2003, Physical review letters.

[32]  Zhong Lin Wang,et al.  Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts , 2003 .

[33]  Liberato Manna,et al.  Controlled growth of tetrapod-branched inorganic nanocrystals , 2003, Nature materials.

[34]  Tae Jae Lee,et al.  Field emission from well-aligned zinc oxide nanowires grown at low temperature , 2002 .

[35]  Shui-Tong Lee,et al.  Fabrication and Field Emission of High‐Density Silicon Cone Arrays , 2002 .

[36]  Zhifeng Ren,et al.  Hierarchical ZnO Nanostructures , 2002 .

[37]  C. Levade,et al.  Crystal polarity of sphalerite semiconductor compounds, as determined by convergent-beam electron diffraction experiments on plan-view (001) samples: Application to ZnSe crystals , 2002 .

[38]  A. Mews,et al.  Fluorescence decay time of single semiconductor nanocrystals. , 2002, Physical review letters.

[39]  H. C. Ong,et al.  Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry , 2001 .

[40]  Shui-Tong Lee,et al.  Oriented silicon carbide nanowires: Synthesis and field emission properties , 2000 .

[41]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[42]  D. Greve,et al.  Reconstructions of the GaN\(0001̄\) Surface , 1997 .

[43]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[44]  Cohen,et al.  Quasiparticle band structures of six II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. , 1994, Physical review. B, Condensed matter.

[45]  Lu,et al.  Zinc-blende-wurtzite polytypism in semiconductors. , 1992, Physical review. B, Condensed matter.

[46]  E. Schlam Electroluminescent phosphors , 1973 .

[47]  F. Williams,et al.  Valence-Band Bending to the Fermi Level and Radiative Recombination in ZnS with Liquid Electrodes , 1966 .

[48]  M. Cardona,et al.  Optical Properties and Band Structure of Wurtzite-Type Crystals and Rutile , 1965 .

[49]  Zhong Lin Wang,et al.  Interface and defect structures of Zn-ZnO core-shell heteronanobelts , 2004 .