The effects of temperature and pressure on gold-chloride speciation in hydrothermal fluids: a Raman spectroscopic study

[1]  P. Murphy,et al.  A gold-copper association in ultramafic-hosted hydrothermal sulfides from the Mid-Atlantic Ridge , 1998 .

[2]  P. Murphy,et al.  Raman spectroscopy of gold chloro-hydroxy speciation in fluids at ambient temperature and pressure: a re-evaluation of the effects of pH and chloride concentration , 1998 .

[3]  M. Pichavant,et al.  Gold solubility and speciation in hydrothermal solutions: experimental study of the stability of hydrosulphide complex of gold (AuHS°) at 350 to 450°C and 500 bars , 1998 .

[4]  Cory C. Pye,et al.  Raman Spectroscopic Measurements and ab Initio Molecular Orbital Studies of Cadmium(II) Hydration in Aqueous Solution , 1998 .

[5]  A. Williams-Jones,et al.  The disproportionation of gold(I) chloride complexes at 25 to 200°C , 1997 .

[6]  A. Williams-Jones,et al.  Chemical mobility of gold in the porphyry-epithermal environment , 1997 .

[7]  L. Benning,et al.  Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150–400°C and 500–1500 bar , 1996 .

[8]  C. Gammons,et al.  The solubility of AuAg alloy + AgCl in HCl/NaCl solutions at 300°C: New data on the stability of Au (1) chloride complexes in hydrothermal fluids , 1995 .

[9]  J. Tossell The speciation of antimony in sulfidic solutions: A theoretical study , 1994 .

[10]  S. Wood,et al.  Gold-chloride complexes in very acidic aqueous solutions and at temperatures 25–300 °C: A laser Raman spectroscopic study , 1991 .

[11]  H. Ohmoto,et al.  Solubility of gold in NaCl-and H2S-bearing aqueous solutions at 250–350°C , 1991 .

[12]  J. A. Peck,et al.  Speciation of aqueous gold(III) chlorides from ultraviolet/visible absorption and Raman/resonance Raman spectroscopies , 1991 .

[13]  H. Barnes,et al.  Solubility of gold in aqueous sulfide solutions from 150 to 350°C , 1989 .

[14]  D. Crerar,et al.  Solubility of the assemblage pyrite-pyrrhotite-magnetite-sphalerite-galena-gold-stibnite-bismuthinite-argen- tite-molybdenite in H 2 O-NaCl-CO 2 solutions from 200 degrees to 350 degrees C degrees , 1987 .

[15]  R. Large,et al.  A chemical model for the concentration of gold in volcanogenic massive sulphide deposits.(CODES publication 12) , 1987 .

[16]  C. Baes,et al.  The hydrolysis of cations , 1986 .

[17]  J. Tossell The speciation of gold in aqueous solution: A theoretical study , 1996 .

[18]  J. Ferraro Chapter 2 – Instrumentation and Experimental Techniques , 1994 .

[19]  S. Wood,et al.  GOLD SPECIATION IN NATURAL WATERS: I. SOLUBILITY AND HYDROLYSIS REACTIONS OF GOLD IN AQUEOUS SOLUTION , 1990 .

[20]  D. Crerar,et al.  Ore fluids; magmatic to supergene , 1987 .

[21]  L. E. Sutton,et al.  Copper, silver, and gold , 1975 .

[22]  P. Braunstein,et al.  The preparation, properties, and vibrational spectra of complexes containing the AuCl2–, AuBr2–, and AuI2– ions , 1973 .

[23]  A. Trotman‐Dickenson,et al.  ‘Comprehensive’ Inorganic Chemistry , 1958, Nature.