Functionalized Ni@SiO2 core/shell magnetic nanoparticles as a chemosensor and adsorbent for Cu2+ ion in drinking water and human blood.

Fluorogenic based nitrobenzofuran-functionalized Ni@SiO(2) core/shell magnetic nanoparticles have been prepared by sol-gel grafting reaction. Their ability to detect and remove metal ions was evaluated by fluorophotometry. The nanoparticles exhibited a high affinity and selectivity for Cu(2+) over competing metal ions. Furthermore, the nanoparticles efficiently removed Cu(2+) in drinking water and human blood.

[1]  R. Westervelt,et al.  Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres. , 2008, ACS nano.

[2]  D. R. Bae,et al.  A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood. , 2009, Angewandte Chemie.

[3]  Evan W. Miller,et al.  A selective turn-on fluorescent sensor for imaging copper in living cells. , 2006, Journal of the American Chemical Society.

[4]  Miqin Zhang,et al.  Multifunctional Magnetic Nanoparticles for Medical Imaging Applications. , 2009, Journal of materials chemistry.

[5]  Ana B. Descalzo,et al.  The supramolecular chemistry of organic-inorganic hybrid materials. , 2006, Angewandte Chemie.

[6]  Bing Xu,et al.  Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. , 2009, Accounts of chemical research.

[7]  J. Jung,et al.  Detection of CuII by a Chemodosimeter‐Functionalized Monolayer on Mesoporous Silica , 2008 .

[8]  R. Martínez‐Máñez,et al.  Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions , 2006 .

[9]  J. Jung,et al.  Silica-based chromogenic and fluorogenic hybrid chemosensor materials. , 2009, Chemical Society reviews.

[10]  Chewook Lee,et al.  Cu2+ ion-induced self-assembly of pyrenylquinoline with a pyrenyl excimer formation. , 2009, Organic letters.

[11]  Younan Xia,et al.  Cover Picture: Shape‐Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? (Angew. Chem. Int. Ed. 1/2009) , 2009 .

[12]  Sang Bok Lee,et al.  Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. , 2005, Journal of the American Chemical Society.

[13]  Bing Xu,et al.  A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. , 2006, Journal of the American Chemical Society.

[14]  Bing Xu,et al.  Biofunctional magnetic nanoparticles for protein separation and pathogen detection. , 2006, Chemical communications.

[15]  Hasuck Kim,et al.  Rhodamine‐Based “Turn‐On” Fluorescent Chemodosimeter for Cu(II) on Ultrathin Platinum Films as Molecular Switches , 2008 .

[16]  T. Joo,et al.  Coumarin-derived Cu(2+)-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. , 2009, Journal of the American Chemical Society.

[17]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[18]  Jong Seung Kim,et al.  Cu2+-induced intermolecular static excimer formation of pyrenealkylamine. , 2008, Organic letters.

[19]  R. Krämer Fluorescent Chemosensors for Cu2+ Ions: Fast, Selective, and Highly Sensitive. , 1998, Angewandte Chemie.

[20]  Xiaoling Yang,et al.  Preparation and characterization of core-shell monodispersed magnetic silica microspheres , 2003 .

[21]  Chad A Mirkin,et al.  Three-layer composite magnetic nanoparticle probes for DNA. , 2005, Journal of the American Chemical Society.

[22]  I. Fridovich,et al.  Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). , 1969, The Journal of biological chemistry.

[23]  Bing Xu,et al.  Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. , 2003, Journal of the American Chemical Society.

[24]  Ralph Weissleder,et al.  Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells , 2000, Nature Biotechnology.

[25]  Bing Xu,et al.  Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. , 2004, Journal of the American Chemical Society.

[26]  Bing Xu,et al.  Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. , 2004, Journal of the American Chemical Society.

[27]  J. Oh,et al.  BODIPY-functionalized gold nanoparticles as a selective fluoro-chromogenic chemosensor for imaging Cu2+ in living cells. , 2010, The Analyst.

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Bing Xu,et al.  Using biofunctional magnetic nanoparticles to capture gram-negative bacteria at an ultra-low concentration. , 2003, Chemical communications.