Improving sea ice thickness estimates by assimilating CryoSat‐2 and SMOS sea ice thickness data simultaneously

[1]  G. Evensen,et al.  Data assimilation and inverse methods in terms of a probabilistic formulation , 1996 .

[2]  L. Mu,et al.  Regime shift of the dominant factor for halocline depth in the Canada Basin during 1990–2008 , 2017, Acta Oceanologica Sinica.

[3]  Steffen Tietsche,et al.  Predictability of the Arctic sea ice edge , 2016 .

[4]  Ron Lindsay,et al.  Assimilation of Ice Concentration in an Ice–Ocean Model , 2006 .

[5]  Neill E. Bowler,et al.  The MOGREPS short‐range ensemble prediction system , 2008 .

[6]  Michael Steele,et al.  Arctic Ice–Ocean Modeling with and without Climate Restoring , 1998 .

[7]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[8]  Humfrey Melling,et al.  Measurements of the Underside Topography of Sea Ice by Moored Subsea Sonar , 1995 .

[9]  Walter H. F. Smith,et al.  Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings , 1997 .

[10]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[11]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[12]  Robert Ricker,et al.  Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation , 2014 .

[13]  William D. Hibler,et al.  On an efficient numerical method for modeling sea ice dynamics , 1997 .

[14]  Duncan J. Wingham,et al.  Increased Arctic sea ice volume after anomalously low melting in 2013 , 2015 .

[15]  Thomas Lavergne,et al.  A model reconstruction of the Antarctic sea ice thickness and volume changes over 1980–2008 using data assimilation , 2013 .

[16]  Keran Claffey,et al.  Ice mass-balance buoys: a tool for measuring and attributing changes in the thickness of the Arctic sea-ice cover , 2006, Annals of Glaciology.

[17]  D. Pham Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems , 2001 .

[18]  W. Hibler The Role of Sea Ice Dynamics in Modeling CO2 Increases , 2013 .

[19]  Lars Nerger,et al.  Assimilating SMOS sea ice thickness into a coupled ice-ocean model using a local SEIK filter , 2014 .

[20]  Lars Nerger,et al.  Software for ensemble-based data assimilation systems - Implementation strategies and scalability , 2013, Comput. Geosci..

[21]  Craig H. Bishop,et al.  The THORPEX Interactive Grand Global Ensemble , 2010 .

[22]  R. Kwok,et al.  Arctic ice-ocean simulation with optimized model parameters: Approach and assessment , 2011 .

[23]  M. Buehner,et al.  Towards ensemble data assimilation for the Environment Canada Regional Ice Prediction System , 2016 .

[24]  Steffen Tietsche,et al.  Will Arctic sea ice thickness initialization improve seasonal forecast skill? , 2014 .

[25]  R. Gerdes,et al.  Sensitivity of simulated Arctic sea ice to realistic ice thickness distributions and snow parameterizations , 2014 .

[26]  Geir Evensen,et al.  Assimilating synthetic CryoSat sea ice thickness in a coupled ice-ocean model , 2007 .

[27]  W. Washington,et al.  A large-scale numerical model of sea ice , 1979 .

[28]  M. Losch,et al.  The role of atmospheric uncertainty in Arctic summer sea ice data assimilation and prediction , 2015 .

[29]  Lars Kaleschke,et al.  A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data , 2017 .

[30]  Thomas Lavergne,et al.  Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic , 2010 .

[31]  J. Ridley,et al.  Sea ice concentration and motion assimilation in a sea ice−ocean model , 2008 .

[32]  W. Hibler A Dynamic Thermodynamic Sea Ice Model , 1979 .

[33]  Donald J. Cavalieri,et al.  Intersensor Calibration Between F13 SSMI and F17 SSMIS for Global Sea Ice Data Records , 2012, IEEE Geoscience and Remote Sensing Letters.

[34]  Geir Evensen,et al.  Assimilation of ice concentration in a coupled ice–ocean model, using the Ensemble Kalman filter , 2003 .

[35]  Josefino C. Comiso,et al.  Characteristics of Arctic winter sea ice from satellite multispectral microwave observations , 1986 .

[36]  Jens Schröter,et al.  Using sea-level data to constrain a finite-element primitive-equation ocean model with a local SEIK filter , 2006 .

[37]  Matthias Drusch,et al.  SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification , 2013 .

[38]  D. M. Smith Extraction of winter total sea-ice concentration in the Greenland and Barents Seas from SSM/I data , 1996 .

[39]  L. Phalippou,et al.  CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields ☆ , 2006 .

[40]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[41]  D. Menemenlis,et al.  On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations , 2010 .

[42]  Malcolm Davidson,et al.  CryoSat‐2 estimates of Arctic sea ice thickness and volume , 2013 .

[43]  M. Losch,et al.  Taking into Account Atmospheric Uncertainty Improves Sequential Assimilation of SMOS Sea Ice Thickness Data in an Ice-Ocean Model , 2016 .

[44]  Jiping Xie,et al.  Benefits of assimilating thin sea ice thickness from SMOS into the TOPAZ system , 2016, The Cryosphere.

[45]  Roberto Buizza,et al.  TIGGE: Preliminary results on comparing and combining ensembles , 2008 .