Computing (R, S) policies with correlated demand

This paper considers the single-item single-stocking non-stationary stochastic lot-sizing problem under correlated demand. By operating under a nonstationary (R, S) policy, in which R denote the reorder period and S the associated order-up-to-level, we introduce a mixed integer linear programming (MILP) model which can be easily implemented by using off-theshelf optimisation software. Our modelling strategy can tackle a wide range of time-seriesbased demand processes, such as autoregressive (AR), moving average(MA), autoregressive moving average(ARMA), and autoregressive with autoregressive conditional heteroskedasticity process(AR-ARCH). In an extensive computational study, we compare the performance of our model against the optimal policy obtained via stochastic dynamic programming. Our results demonstrate that the optimality gap of our approach averages 2.28% and that computational performance is good.

[1]  Stergios B. Fotopoulos,et al.  Safety stock determination with correlated demands and arbitrary lead times , 1988 .

[2]  James H. Bookbinder,et al.  Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints , 1988 .

[3]  Zhao-tong Lian,et al.  A perishable inventory model with Markovian renewal demands , 2009 .

[4]  Xiaoming Li Managing Dynamic Inventory Systems with Product Returns: A Markov Decision Process , 2013, J. Optim. Theory Appl..

[5]  Mahmut Parlar,et al.  Inventory models with unreliable suppliersin a random environment , 1999, Ann. Oper. Res..

[6]  Jing-Sheng Song,et al.  Optimal Policies for Multiechelon Inventory Problems with Markov-Modulated Demand , 2001, Oper. Res..

[7]  Matteo Fischetti,et al.  On handling indicator constraints in mixed integer programming , 2016, Comput. Optim. Appl..

[8]  Ş. Tarim,et al.  The stochastic dynamic production/inventory lot-sizing problem with service-level constraints , 2004 .

[9]  Emilio Carrizosa,et al.  Robust newsvendor problem with autoregressive demand , 2016, Comput. Oper. Res..

[10]  Awi Federgruen,et al.  An Efficient Algorithm for Computing Optimal (s, S) Policies , 1984, Oper. Res..

[11]  Brian G. Kingsman,et al.  Production, Manufacturing and Logistics Modelling and computing (R n ,S n ) policies for inventory systems with non-stationary stochastic demand , 2005 .

[12]  Stephen C. Graves,et al.  A Single-Item Inventory Model for a Nonstationary Demand Process , 1999, Manuf. Serv. Oper. Manag..

[13]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[14]  Suresh P. Sethi,et al.  Optimality of (s, S) Policies in Inventory Models with Markovian Demand , 1995, Oper. Res..

[15]  Roberto Rossi,et al.  Piecewise linear approximations for the static-dynamic uncertainty strategy in stochastic lot-sizing , 2013, ArXiv.

[16]  Armagan Tarim,et al.  Constraint programming for computing non-stationary (R, S) inventory policies , 2008, Eur. J. Oper. Res..

[17]  Roberto Rossi,et al.  An efficient computational method for a stochastic dynamic lot-sizing problem under service-level constraints , 2011, Eur. J. Oper. Res..

[18]  Roberto Rossi,et al.  O C ] 1 3 A ug 2 01 3 Piecewise linear approximations of the standard normal first order loss function , 2013 .

[19]  S. Karlin,et al.  OPTIMAL POLICY FOR DYNAMIC INVENTORY PROCESS WITH NON-STATIONARY STOCHASTIC DEMANDS , 1960 .

[20]  Ulaş Özen,et al.  Static-dynamic uncertainty strategy for a single-item stochastic inventory control problem , 2012 .

[21]  S. Sethi,et al.  Inventory Models with Markovian Demands and Cost Functions of Polynomial Growth , 1998 .

[22]  Bacel Maddah,et al.  Continuous (s, S) policy with MMPP correlated demand , 2015, Eur. J. Oper. Res..

[23]  D. Iglehart Optimality of (s, S) Policies in the Infinite Horizon Dynamic Inventory Problem , 1963 .

[24]  David R. Kincaid,et al.  Linear Algebra: Theory and Applications , 2010 .

[25]  Jing-Sheng Song,et al.  Inventory Control in a Fluctuating Demand Environment , 1993, Oper. Res..

[26]  Burak Eksioglu,et al.  A reformulation for the stochastic lot sizing problem with service-level constraints , 2014, Oper. Res. Lett..

[27]  W. Kwon,et al.  Receding Horizon Control: Model Predictive Control for State Models , 2005 .

[28]  Roberto Rossi,et al.  A Global Chance-Constraint for Stochastic Inventory Systems Under Service Level Constraints , 2008, Constraints.

[29]  L. E. Clarke,et al.  Probability and Measure , 1980 .

[30]  W. D. Ray Computation of Reorder Levels When the Demands are Correlated and the Lead Time Random , 1981 .

[31]  A. F. Veinott Optimal Policy for a Multi-product, Dynamic Non-Stationary Inventory Problem , 1965 .

[32]  S. Sethi,et al.  Average Cost Optimality in Inventory Models with Markovian Demands , 1997 .

[33]  Howard E. Thompson,et al.  Optimality of Myopic Inventory Policies for Certain Dependent Demand Processes , 1975 .

[34]  Cheng Zhang,et al.  (s, S) Inventory Systems with Correlated Demands , 2016, INFORMS J. Comput..

[35]  Ronald G. Askin A Procedure for Production Lot Sizing with Probabilistic Dynamic Demand , 1981 .

[36]  Hau L. Lee,et al.  Optimal Policies and Approximations for a Serial Multiechelon Inventory System with Time-Correlated Demand , 2003, Oper. Res..

[37]  H. Scarf THE OPTIMALITY OF (S,S) POLICIES IN THE DYNAMIC INVENTORY PROBLEM , 1959 .