Sparse control of alignment models in high dimension
暂无分享,去创建一个
Massimo Fornasier | Oliver Junge | Mattia Bongini | Benjamin Scharf | M. Fornasier | O. Junge | B. Scharf | M. Bongini
[1] Richard G. Baraniuk,et al. Random Projections of Smooth Manifolds , 2009, Found. Comput. Math..
[2] Massimo Fornasier,et al. Sparse Stabilization and Control of the Cucker-Smale Model , 2012 .
[3] Massimo Fornasier,et al. Sparse Stabilization and Control of Alignment Models , 2012, 1210.5739.
[4] Seung-Yeal Ha,et al. Emergent Behavior of a Cucker-Smale Type Particle Model With Nonlinear Velocity Couplings , 2010, IEEE Transactions on Automatic Control.
[5] Jan Vybíral,et al. Particle Systems and Kinetic Equations Modeling Interacting Agents in High Dimension , 2011, Multiscale Model. Simul..
[6] M. Fornasier,et al. Sparse stabilization and optimal control of the Cucker-Smale model , 2013 .
[7] M. Fornasier,et al. Mean-Field Optimal Control , 2013, 1306.5913.
[8] Massimo Fornasier,et al. Sparse stabilization of dynamical systems driven by attraction and avoidance forces , 2014, Networks Heterog. Media.
[9] Ronald R. Coifman,et al. Diffusion maps for changing data , 2012, ArXiv.
[10] GuptaAnupam,et al. An elementary proof of a theorem of Johnson and Lindenstrauss , 2003 .
[11] S. Smale,et al. On the mathematics of emergence , 2007 .
[12] Massimo Fornasier,et al. Mean-field sparse optimal control , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[13] Mauro Maggioni,et al. Geometric multiscale reduction for autonomous and controlled nonlinear systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).
[14] Felipe Cucker,et al. Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.
[15] Massimo Fornasier,et al. Un)conditional consensus emergence under perturbed and decentralized feedback controls , 2015 .
[16] Sanjoy Dasgupta,et al. An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.
[17] Yongsik Kim,et al. APPLICATION OF FLOCKING MECHANISM TO THE MODELING OF STOCHASTIC VOLATILITY , 2013 .
[18] Yu. S. Ledyaev,et al. Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..
[19] Sjoerd Dirksen,et al. Dimensionality Reduction with Subgaussian Matrices: A Unified Theory , 2014, Foundations of Computational Mathematics.