IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS Publication Information
暂无分享,去创建一个
Michael J. Watts | Haibo He | Giorgio Battistelli | Toshihisa Tanaka | Sergio Cruces | Qinglai Wei | Dianhui Wang | Eduardo Bayro-Corrochano | Saudi Arabia | Cristiano Cervellera | Badong Chen | Rhee Man Kil | Shengli Xie | Preben Kidmose | Sander Bohte | Stefano Squartini | Igor Škrjanc | Ahmad Taher Azar | Björn Schuller | Dacheng Tao | Maurizio Filippone | Robi Polikar | Manuel Roveri | Huajin Tang | Wenlian Lu | Chunhua Shen | Adel M. Alimi | Marco Wiering | King Fahd | Changyin Sun | Shuiwang Ji | Murad Abu-Khalaf | Bart Baesens | El-Sayed M. El-Alfy | Ana Madureira | Giorgio Gnecco | Danil V. Prokhorov | Charles W. Anderson | Peter Tino | Zhijun Li | Yongduan Song | Robert Legenstein | Stefan Wermter | Juwei Lu | Daoyi Dong | Derong Liu | Hongyi Li | Jiancheng Lv | Madhusudana Shashanka | Jonathan Wu | David Elizondo | Pantelis Bouboulis | Yun Raymond Fu | Jinling Liang | Massimo Panella | Qionghai Dai | Dong Xu | El-Sayed El-Alfy | Steven Damelin | Aluizio Fausto | Padua Braga | C. Anderson | M. Panella | G. Gnecco | M. Wiering | S. Cruces | Shuiwang Ji | Dong Xu | Derong Liu | R. Legenstein | Haibo He | Dianhui Wang | D. Prokhorov | Toshihisa Tanaka | Yongduan Song | M. Abu-Khalaf | A. Alimi | A. Fausto | A. Azar | B. Baesens | G. Battistelli | E. Bayro-Corrochano | S. Bohté | P. Bouboulis | Padua Braga | C. Cervellera | Badong Chen | Qionghai Dai | S. Damelin | D. Dong | K. Fahd | S. Arabia | D. Elizondo | M. Filippone | Y. Fu | P. Kidmose | R. Kil | Hongyi Li | Zhijun Li | Jinling Liang | Juwei Lu | Wenlian Lu | Jiancheng Lv | A. Madureira | R. Polikar | M. Roveri | Björn Schuller | Madhusudana Shashanka | Chunhua Shen | I. Škrjanc | S. Squartini | Changyin Sun | Huajin Tang | D. Tao | P. Tiňo | M. Watts | Q. Wei | S. Wermter | Jonathan Wu | Shengli Xie
[1] S. Hyakin,et al. Neural Networks: A Comprehensive Foundation , 1994 .
[2] Kuldip K. Paliwal,et al. Bidirectional recurrent neural networks , 1997, IEEE Trans. Signal Process..
[3] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.
[4] Anil K. Jain,et al. Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[5] F.M. Ghannouchi,et al. Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks , 2004, IEEE Transactions on Microwave Theory and Techniques.
[6] King-Sun Fu,et al. IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[7] Inderjit S. Dhillon,et al. Clustering on the Unit Hypersphere using von Mises-Fisher Distributions , 2005, J. Mach. Learn. Res..
[8] Jaehyeong Kim,et al. A Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers , 2006, IEEE Transactions on Signal Processing.
[9] F.M. Ghannouchi,et al. Adaptive Digital Predistortion of Wireless Power Amplifiers/Transmitters Using Dynamic Real-Valued Focused Time-Delay Line Neural Networks , 2010, IEEE Transactions on Microwave Theory and Techniques.
[10] F Mkadem,et al. Physically Inspired Neural Network Model for RF Power Amplifier Behavioral Modeling and Digital Predistortion , 2011, IEEE Transactions on Microwave Theory and Techniques.
[11] Fadhel M. Ghannouchi,et al. A Mutual Distortion and Impairment Compensator for Wideband Direct-Conversion Transmitters Using Neural Networks , 2012, IEEE Transactions on Broadcasting.
[12] Geoffrey E. Hinton,et al. Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[13] 张萌,et al. Augmented radial basis function neural network predistorter for linearisation of wideband power amplifiers , 2014 .
[14] Yiming Yang,et al. Von Mises-Fisher Clustering Models , 2014, ICML.
[15] Xiaogang Wang,et al. Deep Learning Face Representation by Joint Identification-Verification , 2014, NIPS.
[16] Ngo Van Linh,et al. Effective and Interpretable Document Classification Using Distinctly Labeled Dirichlet Process Mixture Models of von Mises-Fisher Distributions , 2015, DASFAA.
[17] Jürgen Schmidhuber,et al. Deep learning in neural networks: An overview , 2014, Neural Networks.
[18] Bumman Kim,et al. The Doherty Power Amplifier: Review of Recent Solutions and Trends , 2015, IEEE Transactions on Microwave Theory and Techniques.
[19] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[20] Sergio Cruces,et al. Behavioral Modeling and Predistortion of Power Amplifiers Under Sparsity Hypothesis , 2015, IEEE Transactions on Microwave Theory and Techniques.
[21] Dumitru Erhan,et al. Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[22] Sumei Sun,et al. A Survey on Power-Amplifier-Centric Techniques for Spectrum- and Energy-Efficient Wireless Communications , 2015, IEEE Communications Surveys & Tutorials.
[23] Youxi Tang,et al. A General Digital Predistortion Architecture Using Constrained Feedback Bandwidth for Wideband Power Amplifiers , 2015, IEEE Transactions on Microwave Theory and Techniques.
[24] Michael S. Bernstein,et al. ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.
[25] Andrew Zisserman,et al. Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.
[26] Luc Van Gool,et al. A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[27] Jian Sun,et al. Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[28] Marko Robnik-Sikonja. Data Generators for Learning Systems Based on RBF Networks , 2016, IEEE Transactions on Neural Networks and Learning Systems.
[29] Yue Gao,et al. Multi-View 3D Object Retrieval With Deep Embedding Network , 2016, IEEE Transactions on Image Processing.
[30] Allen Katz,et al. The Evolution of PA Linearization: From Classic Feedforward and Feedback Through Analog and Digital Predistortion , 2016, IEEE Microwave Magazine.
[31] R. Braithwaite. Digital Predistortion of an RF Power Amplifier Using a Reduced Volterra Series Model With a Memory Polynomial Estimator , 2017, IEEE Transactions on Microwave Theory and Techniques.
[32] Zoya Popovic,et al. Amping Up the PA for 5G: Efficient GaN Power Amplifiers with Dynamic Supplies , 2017, IEEE Microwave Magazine.
[33] Bernt Schiele,et al. Learning Video Object Segmentation from Static Images , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[34] Nei Kato,et al. State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow’s Intelligent Network Traffic Control Systems , 2017, IEEE Communications Surveys & Tutorials.
[35] Luc Van Gool,et al. The 2017 DAVIS Challenge on Video Object Segmentation , 2017, ArXiv.
[36] Peter V. Gehler,et al. Video Propagation Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[37] Matthieu Crussière,et al. Quantifying the Memory Effects of Power Amplifiers: EVM Closed-Form Derivations of Multicarrier Signals , 2017, IEEE Wireless Communications Letters.
[38] Liming Chen,et al. von Mises-Fisher Mixture Model-based Deep learning: Application to Face Verification , 2017, ArXiv.
[39] Yurong Liu,et al. A survey of deep neural network architectures and their applications , 2017, Neurocomputing.
[40] Ming-Hsuan Yang,et al. SegFlow: Joint Learning for Video Object Segmentation and Optical Flow , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).
[41] Nei Kato,et al. The Deep Learning Vision for Heterogeneous Network Traffic Control: Proposal, Challenges, and Future Perspective , 2017, IEEE Wireless Communications.
[42] Chang-Su Kim,et al. Online Video Object Segmentation via Convolutional Trident Network , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[43] Bhiksha Raj,et al. SphereFace: Deep Hypersphere Embedding for Face Recognition , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[44] Luc Van Gool,et al. One-Shot Video Object Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[45] Bastian Leibe,et al. Online Adaptation of Convolutional Neural Networks for Video Object Segmentation , 2017, BMVC.