Efficient Minimization of Decomposable Submodular Functions

Many combinatorial problems arising in machine learning can be reduced to the problem of minimizing a submodular function. Submodular functions are a natural discrete analog of convex functions, and can be minimized in strongly polynomial time. Unfortunately, state-of-the-art algorithms for general submodular minimization are intractable for larger problems. In this paper, we introduce a novel subclass of submodular minimization problems that we call decomposable. Decomposable submodular functions are those that can be represented as sums of concave functions applied to modular functions. We develop an algorithm, SLG, that can efficiently minimize decomposable submodular functions with tens of thousands of variables. Our algorithm exploits recent results in smoothed convex minimization. We apply SLG to synthetic benchmarks and a joint classification-and-segmentation task, and show that it outperforms the state-of-the-art general purpose submodular minimization algorithms by several orders of magnitude.

[1]  Elad Hazan,et al.  Beyond Convexity: Online Submodular Minimization , 2009, NIPS.

[2]  Fabián A. Chudak,et al.  Efficient solutions to relaxations of combinatorial problems with submodular penalties via the Lovász extension and non-smooth convex optimization , 2007, SODA '07.

[3]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[4]  Satoru Iwata,et al.  Computational geometric approach to submodular function minimization for multiclass queueing systems , 2007, IPCO.

[5]  Philip H. S. Torr,et al.  Solving Energies with Higher Order Cliques , 2007 .

[6]  Pushmeet Kohli,et al.  P3 & Beyond: Solving Energies with Higher Order Cliques , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  S. Fujishige,et al.  The Minimum-Norm-Point Algorithm Applied to Submodular Function Minimization and Linear Programming , 2006 .

[8]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[9]  Satoru Iwata,et al.  A push-relabel framework for submodular function minimization and applications to parametric optimization , 2003, Discret. Appl. Math..

[10]  Francis R. Bach,et al.  Structured sparsity-inducing norms through submodular functions , 2010, NIPS.

[11]  Maurice Queyranne,et al.  Minimizing symmetric submodular functions , 1998, Math. Program..

[12]  Luc Van Gool,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[13]  Antonio Criminisi,et al.  TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context , 2007, International Journal of Computer Vision.

[14]  Satoru Iwata,et al.  A simple combinatorial algorithm for submodular function minimization , 2009, SODA.

[15]  Satoru Iwata,et al.  A fully combinatorial algorithm for submodular function minimization , 2001, SODA '02.

[16]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[17]  Elad Hazan,et al.  Online submodular minimization , 2009, J. Mach. Learn. Res..

[18]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Andreas Krause,et al.  SFO: A Toolbox for Submodular Function Optimization , 2010, J. Mach. Learn. Res..

[20]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[21]  Daniel Freedman,et al.  Energy minimization via graph cuts: settling what is possible , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[22]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..