The nature of large-scale turbulence in the Jovian atmosphere

THE NATURE OF LARGE-SCALE TURBULENCE IN THE JOVIAN ATMOSPHERE 00 The energetics and spectral characteristics of quasi-geostrophic turbulence in Jupiter's atmosphere are examined using sequences of Voyager images and infrared temperature soundings. Using global wind measurements we quantify momentum transports associated with zonally symmetric stresses and turbulent stresses. Though a strong up-gradient flux of momentum by eddies is observed, measurements do not preclude the possibility that symmetric stresses play a critical role in maintaining the mean zonal circulation. Strong correlation between the observed meridional distribution of eddy-scale kinetic energy and available potential energy suggests coupling between the observed cloudtop turbulent motions and the upper tropospheric thermodynamics. We formulate an Oort energy budget for Jupiter's upper troposphere. Fourier analyses of turbulent motions within zonal jets suggest that large-scale Jovian turbulence obeys a k -5/3 power law, where k is the zonal wavenumber. This implies that the observed turbulence is two-dimensional with an up-gradient flow of kinetic energy fro g smaller scales (e.g., baroclinic scales). Turbulent kinetic energy generally peaks at the scale for which Rossby wave propagation begins as suggested by Rhines (1975).

[1]  J. G. Charney,et al.  THE DYNAMICS OF LONG WAVES IN A BAROCLINIC WESTERLY CURRENT , 1947 .

[2]  R. White The Role of Mountains in the Angular-Momentum Balance of the Atmosphere. , 1949 .

[3]  H. Panofsky,et al.  The Atmospheres of the Other Planets , 1951 .

[4]  W. V. D. Bijl A Hemispherical study of the atmospheric angular‐momentum balance , 1951 .

[5]  Ragnar Fjørtoft,et al.  On the Changes in the Spectral Distribution of Kinetic Energy for Twodimensional, Nondivergent Flow , 1953 .

[6]  Norman A. Phillips,et al.  Energy Transformations and Meridional Circulations associated with simple Baroclinic Waves in a two-level, Quasi-geostrophic Model , 1954 .

[7]  B. M. Peek The planet Jupiter , 1958 .

[8]  Charles Henry Brian Priestley,et al.  Turbulent Transfer in the Lower Atmosphere , 1959 .

[9]  J. S. A. Green,et al.  A problem in baroclinic stability , 1960 .

[10]  Norman A. Phillips THE GENERAL CIRCULATION OF THE ATMOSPHERE: A NUMERICAL EXPERIMENT , 1960 .

[11]  R. Hide,et al.  Origin of Jupiter's Great Red Spot , 1961, Nature.

[12]  L. Howard,et al.  ON INSTABILITY OF PARALLEL FLOW OF INVISCID FLUID IN A ROTATING SYSTEM WITH VARIABLE CORIOLIS PARAMETER , 1963 .

[13]  G. Árnason The stability of nongeostrophic perturbations in a baroclinic zonal flow , 1963 .

[14]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[15]  A. Oort On Estimates of the Atmospheric Energy Cycle , 1964, Renewable Energy.

[16]  Louis N. Howard,et al.  Hydrodynamic Stability of Parallel Flow of Inviscid Fluid , 1966 .

[17]  R. Kraichnan Inertial Ranges in Two‐Dimensional Turbulence , 1967 .

[18]  P. Stone An Application of Baroclinic Stability Theory to the Dynamics of the Jovian Atmosphere , 1967 .

[19]  P. Gierasch,et al.  A mechanism for Jupiter's equatorial acceleration. , 1968 .

[20]  Harvey P. Greenspan,et al.  The Theory of Rotating Fluids. By H. P. GREENSPAN. Cambridge University Press, 1968. 327 pp. £5.50. , 1972, Journal of Fluid Mechanics.

[21]  A. Ingersoll,et al.  Dynamics of Jupiter's Cloud Bands , 1969 .

[22]  P. Gierasch,et al.  Radiative Time Constants in the Atmosphere of Jupiter , 1969 .

[23]  C. Chapman Jupiter's Zonal Winds: Variation with Latitude , 1969 .

[24]  A. Barcilon,et al.  A Moist, Hadley Cell Model for Jupiter's Cloud Bands , 1970 .

[25]  W. Washington,et al.  On the Spectral Distribution of Large-Scale Atmospheric Kinetic Energy , 1970 .

[26]  F. Busse DIFFERENTIAL ROTATION IN STELLAR CONVECTION ZONES. , 1970 .

[27]  P. Stone The symmetric baroclinic instability of an equatorial current , 1971 .

[28]  J. Deardorff,et al.  On the magnitude of the subgrid scale eddy coefficient , 1971 .

[29]  P. Black,et al.  On the Asymmetric Structure of the Tropical Cyclone Outflow Layer , 1971 .

[30]  The planet Jupiter (1970), NASA SPACE VEHICLE DESIGN CRITERIA (Environment) , 1971 .

[31]  W. H. Reid,et al.  Mathematical problems in the geophysical sciences , 1971 .

[32]  Peter H. Stone,et al.  A Simplified Radiative-Dynamical Model for the Static Stability of Rotating Atmospheres , 1972 .

[33]  J. Holton An introduction to dynamic meteorology , 2004 .

[34]  M. McIntyre Baroclinic instability of an idealized model of the polar night jet , 1972 .

[35]  A. Ingersoll Jupiters Great Red Spot: A Free Atmospheric Vortex? , 1973, Science.

[36]  T. Maxworthy A review of Jovian atmospheric dynamics , 1973 .

[37]  Gareth P. Williams,et al.  Dynamics of a Convectively Unstable Atmosphere.: Jupiter? , 1973 .

[38]  A. Ingersoll,et al.  Radiative instability of a cloudy planetary atmosphere. , 1973 .

[39]  A. Cameron,et al.  Models of the Giant Planets , 1974 .

[40]  T. Maxworthy A wave driven model of the Jovian equatorial jet , 1975 .

[41]  J. Holton The dynamic meteorology of the stratosphere and mesosphere , 1975 .

[42]  P. Stone The meteorology of the Jovian atmosphere , 1976 .

[43]  T. Maxworthy,et al.  New theory of the Great Red Spot from solitary waves in the Jovian atmosphere , 1976, Nature.

[44]  P. Gierasch,et al.  The Voyager infrared spectroscopy and radiometry investigation , 1977 .

[45]  L. Redekopp,et al.  On the theory of solitary Rossby waves , 1977, Journal of Fluid Mechanics.

[46]  Dynamic feature analysis for Voyager at the Image Processing Laboratory , 1978 .

[47]  T. Maxworthy,et al.  On the production and interaction of planetary solitary waves: Applications to the Jovian atmosphere , 1978 .

[48]  Gareth P. Williams Planetary Circulations: 1. Barotropic Representation of Jovian and Terrestrial Turbulence , 1978 .

[49]  P. Gierasch,et al.  Infrared Observations of the Jovian System from Voyager 1 , 1979, Science.

[50]  G. E. Wood,et al.  Radio Science with Voyager 1 at Jupiter: Preliminary Profiles of the Atmosphere and Ionosphere , 1979, Science.

[51]  Leonard Snyder Television Optics For The Voyager Mission To Jupiter And Saturn , 1979, Other Conferences.

[52]  S. Collins,et al.  Zonal velocity and texture in the jovian atmosphere inferred from Voyager images , 1979, Nature.

[53]  D. Gautier,et al.  Atmospheric thermal structures of the giant planets , 1979 .

[54]  A. Ingersoll,et al.  Baroclinic instabilities in Jupiter's zonal flow , 1979 .

[55]  Robert A. West,et al.  Spatially resolved methane band photometry of Jupiter , 1979 .

[56]  R. Pfeffer,et al.  Effects of Eddy Fluxes of Angular Momentum on Model Hurricane Development , 1980 .

[57]  B. Conrath,et al.  Albedo, internal heat, and energy balance of Jupiter: Preliminary results of the Voyager Infrared Investigation , 1980 .

[58]  Jan-Peter Muller,et al.  Measurements of wind vectors, eddy momentum transports, and energy conversions in Jupiter's atmosphere from Voyager 1 images , 1980 .

[59]  T. Tatsumi Theory of Homogeneous Turbulence , 1980 .

[60]  A. Ingersoll,et al.  Numerical Model of Long-Lived Jovian Vortices , 1980 .

[61]  P. Gierasch,et al.  Thermal structure and dynamics of the Jovian atmosphere 1. The great red spot , 1980 .

[62]  M. Yanai,et al.  Upper Tropospheric Waves in the Tropics. Part I: Dynamical Analysis in the Wavenumber-Frequency Domain. , 1980 .

[63]  J. L. Mitchell,et al.  Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images , 1981 .

[64]  F. M. Flasar,et al.  Thermal structure and dynamics of the Jovian atmosphere 2. Visible cloud features , 1981 .

[65]  T V Johnson,et al.  Encounter with saturn: voyager 1 imaging science results. , 1981, Science.

[66]  P. Gierasch,et al.  Stability of zonal flows on Jupiter , 1981 .

[67]  Andrew P. Ingersoll,et al.  Flow fields within Jupiter's Great Red Spot and White Oval BC , 1981 .