Good Lattice Rules in Weighted Korobov Spaces with General Weights
暂无分享,去创建一个
Henryk Wozniakowski | Josef Dick | Ian H. Sloan | Xiaoqun Wang | I. Sloan | H. Wozniakowski | J. Dick | Xiaoqun Wang
[1] Henryk Wozniakowski,et al. Tractability of Multivariate Integration for Weighted Korobov Classes , 2001, J. Complex..
[2] Fred J. Hickernell,et al. Integration and approximation in arbitrary dimensions , 2000, Adv. Comput. Math..
[3] I. H. SLOAN,et al. Constructing Randomly Shifted Lattice Rules in Weighted Sobolev Spaces , 2002, SIAM J. Numer. Anal..
[4] Henryk Wozniakowski,et al. Finite-order weights imply tractability of multivariate integration , 2004, J. Complex..
[5] Ian H. Sloan,et al. Efficient Weighted Lattice Rules with Applications to Finance , 2006, SIAM J. Sci. Comput..
[6] P. Glasserman,et al. A Comparison of Some Monte Carlo and Quasi Monte Carlo Techniques for Option Pricing , 1998 .
[7] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[8] Henryk Wozniakowski,et al. Liberating the weights , 2004, J. Complex..
[9] Josef Dick,et al. On Korobov Lattice Rules in Weighted Spaces , 2004, SIAM J. Numer. Anal..
[10] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[11] Ian H. Sloan,et al. Properties of Certain Trigonometric Series Arising in Numerical Analysis , 1991 .
[12] H. Woxniakowski. Information-Based Complexity , 1988 .
[13] Frances Y. Kuo,et al. Component-by-Component Construction of Good Lattice Rules with a Composite Number of Points , 2002, J. Complex..
[14] Fred J. Hickernell,et al. The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..
[15] Ian H. Sloan,et al. Why Are High-Dimensional Finance Problems Often of Low Effective Dimension? , 2005, SIAM J. Sci. Comput..
[16] H. Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .
[17] Frances Y. Kuo,et al. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces , 2003, J. Complex..
[18] Josef Dick. On the convergence rate of the component-by-component construction of good lattice rules , 2004, J. Complex..
[19] Kai-Tai Fang,et al. The effective dimension and quasi-Monte Carlo integration , 2003, J. Complex..
[20] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[21] D. Hunter. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .
[22] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[23] Henryk Wozniakowski,et al. Intractability Results for Integration and Discrepancy , 2001, J. Complex..