HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data

Abstract The HITRAN Application Programming Interface (HAPI) is presented. HAPI is a free Python library, which extends the capabilities of the HITRANonline interface ( www.hitran.org ) and can be used to filter and process the structured spectroscopic data. HAPI incorporates a set of tools for spectra simulation accounting for the temperature, pressure, optical path length, and instrument properties. HAPI is aimed to facilitate the spectroscopic data analysis and the spectra simulation based on the line-by-line data, such as from the HITRAN database [JQSRT (2013) 130, 4–50], allowing the usage of the non-Voigt line profile parameters, custom temperature and pressure dependences, and partition sums. The HAPI functions allow the user to control the spectra simulation and data filtering process via a set of the function parameters. HAPI can be obtained at its homepage www.hitran.org/hapi .

[1]  David A. Long,et al.  O2 A-band line parameters to support atmospheric remote sensing , 2010 .

[2]  Charles Chackerian,et al.  Collisional Line Mixing , 1992 .

[3]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[4]  Keeyoon Sung,et al.  Spectral line parameters including temperature dependences of self- and air-broadening in the 2←0 band of CO at 2.3 μm , 2012 .

[5]  Laurence S. Rothman,et al.  Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014) , 2015 .

[6]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[7]  Jonathan Tennyson,et al.  A new relational database structure and online interface for the HITRAN database , 2013 .

[8]  Jinxue Wang,et al.  Reviewing atmospheric radiative transfer modeling: new developments in high- and moderate-resolution FASCODE/FASE and MODTRAN , 1996, Optics + Photonics.

[9]  Laurence S. Rothman,et al.  H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2 , 2016 .

[10]  Laurence S. Rothman,et al.  The implementation of non-Voigt line profiles in the HITRAN database: H2 case study , 2016 .

[11]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[12]  A Goldman,et al.  The HITRAN database: 1986 edition. , 1987, Applied optics.

[13]  Franz Schreier,et al.  Optimized implementations of rational approximations for the Voigt and complex error function , 2011 .

[14]  Jinxue Wang,et al.  Fast Atmospheric Signature CODE (FASCODE): an update and applications in atmospheric remote sensing , 1994, Optics & Photonics.

[15]  Jonathan Tennyson,et al.  Virtual Atomic and Molecular Data Centre , 2010 .

[16]  Laurence S. Rothman,et al.  HITRANonline: An online interface and the flexible representation of spectroscopic data in the HITRAN database , 2016 .

[17]  Laurence S. Rothman,et al.  Updated database plus software for line-mixing in CO2 infrared spectra and their test using laboratory spectra in the 1.5–2.3 μm region , 2010 .

[18]  Jean-Michel Hartmann,et al.  An improved O2 A band absorption model and its consequences for retrievals of photon paths and surface pressures , 2008 .

[19]  Jean-Michel Hartmann,et al.  Erratum to "Efficient computation of some speed-dependent isolated line profiles" ( J. Quant. Spectrosc. Radiat. Transfer 129 (2013) 199-203) , 2014 .

[20]  Laurence S. Rothman,et al.  Reference spectroscopic data for hydrogen halides, Part II: The line lists , 2013 .

[21]  Jean-Michel Hartmann,et al.  An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes , 2013 .

[22]  Jean-Michel Hartmann,et al.  Efficient computation of some speed-dependent isolated line profiles , 2013 .

[23]  Thomas Graf,et al.  The size of the proton , 2010, Nature.

[24]  Thomas Graf,et al.  The size of the proton and the deuteron , 2011 .

[25]  Jonathan Tennyson,et al.  Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report) , 2014, 1409.7782.

[26]  Keeyoon Sung,et al.  Spectral line parameters including temperature dependences of air-broadening for the 2 ← 0 bands of 13C16O and 12C18O at 2.3 μm , 2012 .

[27]  I. Galli,et al.  Testing the validity of Bose-Einstein statistics in molecules , 2015 .

[28]  Dennis K. Killinger,et al.  HITRAN-PC: 25 YEARS OF ACADEMIC DEVELOPMENT AND COMMERCIALIZATION OF LASER ATMOSPHERIC TRANSMISSION SOFTWARE FOR ENVIRONMENTAL REMOTE SENSING , 2012 .

[29]  Laurence S. Rothman,et al.  Total internal partition sums to support planetary remote sensing , 2011 .

[30]  P. Edwards,et al.  GENLN2: A general line-by-line atmospheric transmittance and radiance model. Version 3.0: Description and users guide , 1992 .

[31]  Shanshan Yu,et al.  O2 A-band line parameters to support atmospheric remote sensing. Part II: The rare isotopologues , 2011 .