Realizing a lattice spin model with polar molecules

[1]  Semion K. Saikin,et al.  Photonics meets excitonics: natural and artificial molecular aggregates , 2013, 1304.0124.

[2]  M. Bishof,et al.  A Quantum Many-Body Spin System in an Optical Lattice Clock , 2012, Science.

[3]  F. Fressin,et al.  Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator , 2012, Science.

[4]  U. Schollwock,et al.  Quantum dynamics of a mobile spin impurity , 2012, Nature Physics.

[5]  Michael Foss-Feig,et al.  Far-from-equilibrium quantum magnetism with ultracold polar molecules. , 2012, Physical review letters.

[6]  E. Maréchal,et al.  Resonant demagnetization of a dipolar BEC in a 3D optical lattice , 2012, 1212.5469.

[7]  T. Esslinger,et al.  Quantum magnetism of ultracold fermions in an optical lattice , 2012 .

[8]  J. Ye,et al.  Anisotropic polarizability of ultracold polar 40K87Rb molecules. , 2012, Physical review letters.

[9]  P. Zoller,et al.  Topological flat bands from dipolar spin systems. , 2012, Physical review letters.

[10]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[11]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[12]  R. Grimm,et al.  Bose-Einstein condensation of erbium. , 2012, Physical review letters.

[13]  Mingwu Lu,et al.  Quantum degenerate dipolar Fermi gas. , 2012, Physical review letters.

[14]  M. Ganahl,et al.  Clustered Wigner-crystal phases of cold polar molecules in arrays of one-dimensional tubes , 2011, 1112.5662.

[15]  Jun Ye,et al.  Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. , 2011, Physical review letters.

[16]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[17]  M. Lukin,et al.  Tunable superfluidity and quantum magnetism with ultracold polar molecules. , 2011, Physical review letters.

[18]  N. Cooper,et al.  Topological px + ipy superfluid phase of fermionic polar molecules , 2011, 1103.3859.

[19]  D. S. Jin,et al.  Controlling the quantum stereodynamics of ultracold bimolecular reactions , 2010, 1010.3731.

[20]  D. Huse,et al.  Many-body localization phase transition , 2010, 1010.1992.

[21]  B. Halperin,et al.  Superfluidity and dimerization in a multilayered system of fermionic polar molecules. , 2010, Physical review letters.

[22]  D. Suter,et al.  NMR quantum simulation of localization effects induced by decoherence. , 2010, Physical review letters.

[23]  E. Mueller,et al.  Two-body recombination in a quantum-mechanical lattice gas: Entropy generation and probing of short-range magnetic correlations , 2010, 1003.5235.

[24]  J. Ye,et al.  Dipolar collisions of polar molecules in the quantum regime , 2010, Nature.

[25]  D. S. Jin,et al.  Quantum-State Controlled Chemical Reactions of Ultracold Potassium-Rubidium Molecules , 2009, Science.

[26]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[27]  J. Ye,et al.  Controlling the hyperfine state of rovibronic ground-state polar molecules. , 2009, Physical review letters.

[28]  Xing Rong,et al.  Preserving electron spin coherence in solids by optimal dynamical decoupling , 2009, Nature.

[29]  M. Lewenstein,et al.  The physics of dipolar bosonic quantum gases , 2009, 0905.0386.

[30]  Jun Ye,et al.  Cold and ultracold molecules: science, technology and applications , 2009, 0904.3175.

[31]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[32]  J. Ye,et al.  A High Phase-Space-Density Gas of Polar Molecules , 2008, Science.

[33]  J. Cirac,et al.  Strong Dissipation Inhibits Losses and Induces Correlations in Cold Molecular Gases , 2008, Science.

[34]  J. M. Taylor,et al.  Electron spin decoherence of single nitrogen-vacancy defects in diamond , 2008, 0805.0327.

[35]  I Bloch,et al.  Time-Resolved Observation and Control of Superexchange Interactions with Ultracold Atoms in Optical Lattices , 2007, Science.

[36]  D. Pritchard,et al.  Continuous and pulsed quantum zeno effect. , 2006, Physical review letters.

[37]  M. Lukin,et al.  Quantum magnetism with multicomponent dipolar molecules in an optical lattice. , 2006, Physical review letters.

[38]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2005, quant-ph/0512222.

[39]  D. Basko,et al.  Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states , 2005, cond-mat/0506617.

[40]  S. Sarma,et al.  Quantum theory of spectral diffusion induced electron spin decoherence , 2005, cond-mat/0501503.

[41]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[42]  Wineland,et al.  Quantum Zeno effect. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[43]  Palmer,et al.  Low-frequency relaxation in Ising spin-glasses. , 1985, Physical review letters.

[44]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[45]  U. Haeberlen,et al.  Approach to High-Resolution nmr in Solids , 1968 .