Earthen levee slide detection via automated analysis of synthetic aperture radar imagery

The main focus of this research is to detect vulnerabilities on the Mississippi river levees using remotely sensed Synthetic Aperture Radar (SAR) imagery. Unstable slope conditions can lead to slump slides, which weaken the levees and increase the likelihood of failure during floods. On-site inspection of levees is expensive and time-consuming, so there is a need to develop efficient automated techniques based on remote sensing technologies to identify levees that are more vulnerable to failure under flood loading. Synthetic Aperture Radar technology, due to its high spatial resolution and potential soil penetration capability, is a good choice to identify problem areas along the levee so that they can be treated to avoid possible catastrophic failure. This research analyzes the ability of detecting the slump slides on the levee with NASA JPL’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data. The main contribution of this research is the development of a machine learning framework to (1) provide improved knowledge on the status of the levees, (2) detect anomalies on the levee sections, (3) provide early warning of impending levee failures, and (4) develop efficient tools for levee health assessment. Textural features have been computed and utilized in the classification tasks to achieve efficient levee characterization. The RX anomaly detector, a training-free unsupervised classification algorithm, detected the active slides on the levee at the time of image acquisition and also flagged some areas as “anomalous,” where new slides appeared at a later date.

[1]  Sang-Ho Yun,et al.  Study of movement and seepage along levees using DINSAR and the airborne UAVSAR instrument , 2012, Remote Sensing.

[2]  A. K. Turner,et al.  Landslides : investigation and mitigation , 1996 .

[3]  Chun-Shien Lu,et al.  Unsupervised texture segmentation via wavelet transform , 1997, Pattern Recognit..

[4]  Rama Chellappa,et al.  Unsupervised segmentation of polarimetric SAR data using the covariance matrix , 1992, IEEE Trans. Geosci. Remote. Sens..

[5]  R. Hanssen,et al.  Monitoring water defense structures using radar interferometry , 2008, 2008 IEEE Radar Conference.

[6]  Ferdinand Bonn,et al.  Monitoring Flood Extent and Forecasting Excess Runoff Risk with RADARSAT-1 Data , 2005 .

[7]  Farshid Vahedifard,et al.  Using in situ soil measurements for analysis of a polarimetric SAR-based classification of levee slump slides in the Lower Mississippi River , 2014 .

[8]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[9]  Dan G. Blumberg,et al.  Multipixel anomaly detection in noisy multispectral images , 2006 .

[10]  Chein-I Chang,et al.  Anomaly detection and classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[11]  J. R. Sveinsson,et al.  Mapping of hyperspectral AVIRIS data using machine-learning algorithms , 2009 .

[12]  Liu Chun-Lin,et al.  A Tutorial of the Wavelet Transform , 2010 .

[13]  Wei Li,et al.  Levee anomaly detection using polarimetric synthetic aperture radar data , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[14]  Helko Breit,et al.  TerraSAR-X Ground Segment Basic Product Specification Document , 2008 .

[15]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[16]  Darshana Mistry,et al.  DISCRETE WAVELET TRANSFORM USING MATLAB , 2013 .

[17]  Henri Maitre,et al.  Processing of Synthetic Aperture Radar Images (Digital Signal and Image Processing series) , 2006 .

[18]  James Aanstoos,et al.  Stressed vegetation identification by SAR time series as an indicator of slope instability in Mississippi River levee segments , 2013, 2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).

[19]  S. Fukuda,et al.  Support vector machine classification of land cover: application to polarimetric SAR data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[20]  Pascale C. Dubois,et al.  Measuring soil moisture with imaging radars , 1995, IEEE Trans. Geosci. Remote. Sens..

[21]  Saurabh Prasad,et al.  Decision Fusion of Textural Features Derived From Polarimetric Data for Levee Assessment , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[22]  Achim Roth,et al.  TerraSAR-X: How can high resolution SAR data support the observation of urban areas? , 2005 .

[23]  Nasser M. Nasrabadi,et al.  A nonlinear kernel-based joint fusion/detection of anomalies using Hyperspectral and SAR imagery , 2008, 2008 15th IEEE International Conference on Image Processing.

[24]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[25]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[26]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[27]  T. Jin,et al.  A NOVEL MINEFIELD DETECTION APPROACH BASED ON MORPHOLOGICAL DIVERSITY , 2013 .

[28]  G. Sadowy,et al.  UAVSAR: a new NASA airborne SAR system for science and technology research , 2006, 2006 IEEE Conference on Radar.

[29]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[30]  H. Zebker,et al.  Imaging radar polarization signatures: Theory and observation , 1987 .

[31]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[32]  A. Jensen,et al.  Ripples in Mathematics - The Discrete Wavelet Transform , 2001 .

[33]  R. Colwell Remote sensing of the environment , 1980, Nature.

[34]  Seisuke Fukuda,et al.  A wavelet-based texture feature set applied to classification of multifrequency polarimetric SAR images , 1999, IEEE Trans. Geosci. Remote. Sens..

[35]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[36]  Bruce Chapman,et al.  USE OF AIRBORNE SAR INTERFEROMETRY FOR MONITORING DEFORMATION OF LARGE-SCALE MAN-MADE FEATURES , 2009 .

[37]  Xiaoli Yu,et al.  Automatic target detection and recognition in multiband imagery: a unified ML detection and estimation approach , 1997, IEEE Trans. Image Process..

[38]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[39]  D. Varnes SLOPE MOVEMENT TYPES AND PROCESSES , 1978 .

[40]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[41]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[42]  Fabio Rocca,et al.  Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[43]  A. Flor Evaluating Levee Failure Susceptibility on the Mississippi River Using Logistic Regression Analysis and GPS Surveying , 2010 .

[44]  Y. Chan,et al.  An Introduction to Synthetic Aperture Radar (SAR) , 2008 .

[45]  Irena Hajnsek,et al.  Identification of Soil Freezing and Thawing States Using SAR Polarimetry at C-Band , 2014, Remote. Sens..

[46]  Kamal Jamshidi,et al.  Improvement of Anomoly Detection Algorithms in Hyperspectral Images using Discrete Wavelet Transform , 2012, ArXiv.

[47]  Yisok Oh,et al.  Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[48]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .