Evolution of Subspecies of Francisella tularensis
暂无分享,去创建一个
M. Forsman | M. Byström | P. Larsson | A. Johansson | Kerstin Svensson | D. Johansson | Pär Larsson | Daniel Johansson
[1] Anders Sjöstedt,et al. The complete genome sequence of Francisella tularensis, the causative agent of tularemia , 2005, Nature Genetics.
[2] Michael P. Cummings,et al. PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .
[3] Na Zhang,et al. A Francisella tularensis Pathogenicity Island Required for Intramacrophage Growth , 2004, Journal of bacteriology.
[4] Paul Keim,et al. Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[5] A. Sjöstedt,et al. Worldwide Genetic Relationships among Francisella tularensis Isolates Determined by Multiple-Locus Variable-Number Tandem Repeat Analysis , 2004, Journal of bacteriology.
[6] A. Benson,et al. Genome diversity among regional populations of Francisella tularensis subspecies tularensis and Francisella tularensis subspecies holarctica isolated from the US. , 2004, FEMS microbiology letters.
[7] V. Chernick. A new evolutionary scenario for the Mycobacterium tuberculosis complex. , 2004, Pediatric pulmonology.
[8] John A. Tainer,et al. Type IV pilus structure and bacterial pathogenicity , 2004, Nature Reviews Microbiology.
[9] G. Scoles. Phylogenetic Analysis of the Francisella-like Endosymbionts of Dermacentor Ticks , 2004, Journal of medical entomology.
[10] J. Gunn,et al. Characterization of the lipopolysaccharide O-antigen of Francisella novicida (U112). , 2004, Carbohydrate research.
[11] C. Médigue,et al. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[12] M. Maiden,et al. Multi-locus sequence typing: a tool for global epidemiology. , 2003, Trends in microbiology.
[13] Richard W. Titball,et al. Genome-Wide DNA Microarray Analysis of Francisella tularensis Strains Demonstrates Extensive Genetic Conservation within the Species but Identifies Regions That Are Unique to the Highly Virulent F. tularensis subsp. tularensis , 2003, Journal of Clinical Microbiology.
[14] E. Rocha. An appraisal of the potential for illegitimate recombination in bacterial genomes and its consequences: from duplications to genome reduction. , 2003, Genome research.
[15] R. Titball,et al. Will the enigma of Francisella tularensis virulence soon be solved? , 2003, Trends in microbiology.
[16] Edward A Graviss,et al. Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains. , 2002, Genetics.
[17] Alicia Aranaz,et al. Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. , 2002, The Journal of infectious diseases.
[18] Radhey S. Gupta,et al. Critical issues in bacterial phylogeny. , 2002, Theoretical population biology.
[19] Philip K. Russell,et al. Tularemia as a biological weapon: medical and public health management. , 2001, JAMA.
[20] N. Moran,et al. Genes Lost and Genes Found: Evolution of Bacterial Pathogenesis and Symbiosis , 2001, Science.
[21] E. Holmes,et al. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[22] A. Sjöstedt,et al. Evaluation of PCR-Based Methods for Discrimination ofFrancisella Species and Subspecies and Development of a Specific PCR That Distinguishes the Two Major Subspecies of Francisella tularensis , 2000, Journal of Clinical Microbiology.
[23] A. Tärnvik,et al. Detection of Francisella tularensis in ulcers of patients with tularemia by PCR , 1997, Journal of clinical microbiology.
[24] G. Sandström,et al. Characterization of two unusual clinically significant Francisella strains , 1996, Journal of clinical microbiology.
[25] J. Smilack. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases , 1995 .
[26] C. W. Moss,et al. Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease , 1989, Journal of clinical microbiology.
[27] W. D. Tigertt. Soviet viable Pasteurella tularensis vaccines. A review of selected articles. , 1962, Bacteriological reviews.
[28] E. Stackebrandt,et al. Bergey's Manual of Systematic Bacteriology , 2005 .
[29] D. Swofford. PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .
[30] M. P. Cummings,et al. PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .
[31] R Palacios,et al. Gene amplification and genomic plasticity in prokaryotes. , 1997, Annual review of genetics.
[32] John E. Bennett,et al. Principles and practice of infectious diseases. Vols 1 and 2. , 1979 .