Evolution of Subspecies of Francisella tularensis

ABSTRACT Analysis of unidirectional genomic deletion events and single nucleotide variations suggested that the four subspecies of Francisella tularensis have evolved by vertical descent. The analysis indicated an evolutionary scenario where the highly virulent F. tularensis subsp. tularensis (type A) appeared before the less virulent F. tularensis subsp. holarctica (type B). Compared to their virulent progenitors, attenuated strains of F. tularensis exhibited specific unidirectional gene losses.

[1]  Anders Sjöstedt,et al.  The complete genome sequence of Francisella tularensis, the causative agent of tularemia , 2005, Nature Genetics.

[2]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[3]  Na Zhang,et al.  A Francisella tularensis Pathogenicity Island Required for Intramacrophage Growth , 2004, Journal of bacteriology.

[4]  Paul Keim,et al.  Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A. Sjöstedt,et al.  Worldwide Genetic Relationships among Francisella tularensis Isolates Determined by Multiple-Locus Variable-Number Tandem Repeat Analysis , 2004, Journal of bacteriology.

[6]  A. Benson,et al.  Genome diversity among regional populations of Francisella tularensis subspecies tularensis and Francisella tularensis subspecies holarctica isolated from the US. , 2004, FEMS microbiology letters.

[7]  V. Chernick A new evolutionary scenario for the Mycobacterium tuberculosis complex. , 2004, Pediatric pulmonology.

[8]  John A. Tainer,et al.  Type IV pilus structure and bacterial pathogenicity , 2004, Nature Reviews Microbiology.

[9]  G. Scoles Phylogenetic Analysis of the Francisella-like Endosymbionts of Dermacentor Ticks , 2004, Journal of medical entomology.

[10]  J. Gunn,et al.  Characterization of the lipopolysaccharide O-antigen of Francisella novicida (U112). , 2004, Carbohydrate research.

[11]  C. Médigue,et al.  Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Maiden,et al.  Multi-locus sequence typing: a tool for global epidemiology. , 2003, Trends in microbiology.

[13]  Richard W. Titball,et al.  Genome-Wide DNA Microarray Analysis of Francisella tularensis Strains Demonstrates Extensive Genetic Conservation within the Species but Identifies Regions That Are Unique to the Highly Virulent F. tularensis subsp. tularensis , 2003, Journal of Clinical Microbiology.

[14]  E. Rocha An appraisal of the potential for illegitimate recombination in bacterial genomes and its consequences: from duplications to genome reduction. , 2003, Genome research.

[15]  R. Titball,et al.  Will the enigma of Francisella tularensis virulence soon be solved? , 2003, Trends in microbiology.

[16]  Edward A Graviss,et al.  Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains. , 2002, Genetics.

[17]  Alicia Aranaz,et al.  Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. , 2002, The Journal of infectious diseases.

[18]  Radhey S. Gupta,et al.  Critical issues in bacterial phylogeny. , 2002, Theoretical population biology.

[19]  Philip K. Russell,et al.  Tularemia as a biological weapon: medical and public health management. , 2001, JAMA.

[20]  N. Moran,et al.  Genes Lost and Genes Found: Evolution of Bacterial Pathogenesis and Symbiosis , 2001, Science.

[21]  E. Holmes,et al.  Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Sjöstedt,et al.  Evaluation of PCR-Based Methods for Discrimination ofFrancisella Species and Subspecies and Development of a Specific PCR That Distinguishes the Two Major Subspecies of Francisella tularensis , 2000, Journal of Clinical Microbiology.

[23]  A. Tärnvik,et al.  Detection of Francisella tularensis in ulcers of patients with tularemia by PCR , 1997, Journal of clinical microbiology.

[24]  G. Sandström,et al.  Characterization of two unusual clinically significant Francisella strains , 1996, Journal of clinical microbiology.

[25]  J. Smilack Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases , 1995 .

[26]  C. W. Moss,et al.  Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease , 1989, Journal of clinical microbiology.

[27]  W. D. Tigertt Soviet viable Pasteurella tularensis vaccines. A review of selected articles. , 1962, Bacteriological reviews.

[28]  E. Stackebrandt,et al.  Bergey's Manual of Systematic Bacteriology , 2005 .

[29]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[30]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[31]  R Palacios,et al.  Gene amplification and genomic plasticity in prokaryotes. , 1997, Annual review of genetics.

[32]  John E. Bennett,et al.  Principles and practice of infectious diseases. Vols 1 and 2. , 1979 .