A Family of Smooth Quasi-interpolants Defined Over Powell–Sabin Triangulations

We investigate the construction of local quasi-interpolation schemes based on a family of bivariate spline functions with smoothness $$r\ge 1$$r≥1 and polynomial degree $$3r-1$$3r-1. These splines are defined on triangulations with Powell–Sabin refinement, and they can be represented in terms of locally supported basis functions that form a convex partition of unity. With the aid of the blossoming technique, we first derive a Marsden-like identity representing polynomials of degree $$3r-1$$3r-1 in such a spline form. Then we present a general recipe to construct various families of smooth quasi-interpolation schemes involving values and/or derivatives of a given function.

[1]  C. D. Boor,et al.  Multivariate piecewise polynomials , 1993, Acta Numerica.

[2]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[3]  Frank Zeilfelder,et al.  Lagrange Interpolation by C1 Cubic Splines on Triangulated Quadrangulations , 2004, Adv. Comput. Math..

[4]  Paul Sablonnière,et al.  Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .

[5]  C. D. Boor,et al.  B-Form Basics. , 1986 .

[6]  S. Ramey,et al.  Acknowledgement , 2000, NeuroImage.

[7]  C. D. Boor,et al.  Quasiinterpolants and Approximation Power of Multivariate Splines , 1990 .

[8]  Hendrik Speleers,et al.  On multivariate polynomials in Bernstein-Bézier form and tensor algebra , 2011, J. Comput. Appl. Math..

[9]  Ahmed Tijini,et al.  Construction of quintic Powell-Sabin spline quasi-interpolants based on blossoming , 2013, J. Comput. Appl. Math..

[10]  A. Serghini,et al.  Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .

[11]  Frank Zeilfelder,et al.  Developments in bivariate spline interpolation , 2000 .

[12]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[13]  C. Micchelli,et al.  Computation of Curves and Surfaces , 1990 .

[14]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[15]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[16]  E. T. Y. Lee,et al.  Marsden's identity , 1996, Comput. Aided Geom. Des..

[17]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[18]  Frank Zeilfelder,et al.  Lagrange Interpolation by Bivariate C1-Splines with Optimal Approximation Order , 2004, Adv. Comput. Math..

[19]  C. Chui,et al.  Optimal Lagrange interpolation by quartic C1 splines on triangulations , 2008 .

[20]  József Szabados,et al.  Trends and Applications in Constructive Approximation , 2006 .

[21]  K. Chung,et al.  On Lattices Admitting Unique Lagrange Interpolations , 1977 .

[22]  Michael E. Mortenson,et al.  Geometric Modeling , 2008, Encyclopedia of GIS.

[23]  Larry L. Schumaker,et al.  Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..

[24]  Hendrik Speleers,et al.  Multivariate normalized Powell-Sabin B-splines and quasi-interpolants , 2013, Comput. Aided Geom. Des..

[25]  A. Serghini,et al.  Normalized trivariate B-splines on Worsey-Piper split and quasi-interpolants , 2012 .

[26]  Larry L. Schumaker,et al.  Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..

[27]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[28]  Hendrik Speleers Interpolation with quintic Powell-Sabin splines , 2012 .

[29]  T. Sauer,et al.  On multivariate Lagrange interpolation , 1995 .

[30]  Frank Zeilfelder,et al.  Local Lagrange Interpolation with Bivariate Splines of Arbitrary Smoothness , 2005 .

[31]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[32]  Paul Sablonnière,et al.  Error Bounds for Hermite Interpolation by Quadratic Splines on an α-Triangulation , 1987 .

[33]  Hans-Peter Seidel,et al.  An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.