A Family of Smooth Quasi-interpolants Defined Over Powell–Sabin Triangulations
暂无分享,去创建一个
[1] C. D. Boor,et al. Multivariate piecewise polynomials , 1993, Acta Numerica.
[2] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[3] Frank Zeilfelder,et al. Lagrange Interpolation by C1 Cubic Splines on Triangulated Quadrangulations , 2004, Adv. Comput. Math..
[4] Paul Sablonnière,et al. Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .
[5] C. D. Boor,et al. B-Form Basics. , 1986 .
[6] S. Ramey,et al. Acknowledgement , 2000, NeuroImage.
[7] C. D. Boor,et al. Quasiinterpolants and Approximation Power of Multivariate Splines , 1990 .
[8] Hendrik Speleers,et al. On multivariate polynomials in Bernstein-Bézier form and tensor algebra , 2011, J. Comput. Appl. Math..
[9] Ahmed Tijini,et al. Construction of quintic Powell-Sabin spline quasi-interpolants based on blossoming , 2013, J. Comput. Appl. Math..
[10] A. Serghini,et al. Polar forms and quadratic spline quasi-interpolants on Powell--Sabin partitions , 2009 .
[11] Frank Zeilfelder,et al. Developments in bivariate spline interpolation , 2000 .
[12] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..
[13] C. Micchelli,et al. Computation of Curves and Surfaces , 1990 .
[14] Hendrik Speleers,et al. A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..
[15] Carla Manni,et al. Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..
[16] E. T. Y. Lee,et al. Marsden's identity , 1996, Comput. Aided Geom. Des..
[17] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[18] Frank Zeilfelder,et al. Lagrange Interpolation by Bivariate C1-Splines with Optimal Approximation Order , 2004, Adv. Comput. Math..
[19] C. Chui,et al. Optimal Lagrange interpolation by quartic C1 splines on triangulations , 2008 .
[20] József Szabados,et al. Trends and Applications in Constructive Approximation , 2006 .
[21] K. Chung,et al. On Lattices Admitting Unique Lagrange Interpolations , 1977 .
[22] Michael E. Mortenson,et al. Geometric Modeling , 2008, Encyclopedia of GIS.
[23] Larry L. Schumaker,et al. Smooth Macro-Elements Based on Powell–Sabin Triangle Splits , 2002, Adv. Comput. Math..
[24] Hendrik Speleers,et al. Multivariate normalized Powell-Sabin B-splines and quasi-interpolants , 2013, Comput. Aided Geom. Des..
[25] A. Serghini,et al. Normalized trivariate B-splines on Worsey-Piper split and quasi-interpolants , 2012 .
[26] Larry L. Schumaker,et al. Macro-elements and stable local bases for splines on Powell-Sabin triangulations , 2003, Math. Comput..
[27] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[28] Hendrik Speleers. Interpolation with quintic Powell-Sabin splines , 2012 .
[29] T. Sauer,et al. On multivariate Lagrange interpolation , 1995 .
[30] Frank Zeilfelder,et al. Local Lagrange Interpolation with Bivariate Splines of Arbitrary Smoothness , 2005 .
[31] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[32] Paul Sablonnière,et al. Error Bounds for Hermite Interpolation by Quadratic Splines on an α-Triangulation , 1987 .
[33] Hans-Peter Seidel,et al. An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.