Numerics and hydrodynamic stability: toward error control in computational fluid dynamics

We critically review the available error analysis in computational fluid dynamics (CFD) and come to the conclusion that the existing error estimates are meaningless in most cases of interest. We propose a new approach to error analysis in CFD aiming at reliable and efficient adaptive quantitative error control. This is based on a precise analysis of hydrodynamic stability coupled with Galerkin orthogonality. We prove a priori- and a posteriori-type error estimates in a model case for pipe flow, formulate corresponding adaptive algorithms, and discuss the potential of this approach for adaptive error control in CFD.

[1]  Daniel D. Joseph,et al.  Stability of fluid motions , 1976 .

[2]  L. Gustavsson,et al.  A resonance mechanism in plane Couette flow , 1980, Journal of Fluid Mechanics.

[3]  M. Landahl A note on an algebraic instability of inviscid parallel shear flows , 1980, Journal of Fluid Mechanics.

[4]  L. Gustavsson Energy growth of three-dimensional disturbances in plane Poiseuille flow , 1981, Journal of Fluid Mechanics.

[5]  Ohannes A. Karakashian,et al.  On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations , 1982 .

[6]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[7]  Christine Bernardi,et al.  A Conforming Finite Element Method for the Time-Dependent Navier–Stokes Equations , 1985 .

[8]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[9]  Jukka Saranen,et al.  Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations , 1986 .

[10]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part III. Smoothing property and higher order error estimates for spatial discretization , 1988 .

[11]  Claes Johnson Error Estimates and Adaptive Time-Step Control for a Class of One-Step Methods for Stiff Ordinary Differential Equations , 1988 .

[12]  Heinz-Otto Kreiss,et al.  On the smallest scale for the incompressible Navier-Stokes equations , 1989, Theoretical and Computational Fluid Dynamics.

[13]  Roger Temam,et al.  Inertial manifolds and multigrid methods , 1990 .

[14]  R. Rannacher On the numerical analysis of the nonstationary Navier-Stokes equations , 1990 .

[15]  Claes Johnson,et al.  Adaptive finite element methods for diffusion and convection problems , 1990 .

[16]  Peter Hansbo,et al.  A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .

[17]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[18]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[19]  Anne E. Trefethen,et al.  A New Direction in Hydrodynamic Stability: Beyond Eigenvalues , 1992 .

[20]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems II: optimal error estimates in L ∞ L 2 and L ∞ L ∞ , 1995 .