Effect of torcetrapib on the progression of coronary atherosclerosis.

BACKGROUND Levels of high-density lipoprotein (HDL) cholesterol are inversely related to cardiovascular risk. Torcetrapib, a cholesteryl ester transfer protein (CETP) inhibitor, increases HDL cholesterol levels, but the functional effects associated with this mechanism remain uncertain. METHODS A total of 1188 patients with coronary disease underwent intravascular ultrasonography. After treatment with atorvastatin to reduce levels of low-density lipoprotein (LDL) cholesterol to less than 100 mg per deciliter (2.59 mmol per liter), patients were randomly assigned to receive either atorvastatin monotherapy or atorvastatin plus 60 mg of torcetrapib daily. After 24 months, disease progression was measured by repeated intravascular ultrasonography in 910 patients (77%). RESULTS After 24 months, as compared with atorvastatin monotherapy, the effect of torcetrapib-atorvastatin therapy was an approximate 61% relative increase in HDL cholesterol and a 20% relative decrease in LDL cholesterol, reaching a ratio of LDL cholesterol to HDL cholesterol of less than 1.0. Torcetrapib was also associated with an increase in systolic blood pressure of 4.6 mm Hg. The percent atheroma volume (the primary efficacy measure) increased by 0.19% in the atorvastatin-only group and by 0.12% in the torcetrapib-atorvastatin group (P=0.72). A secondary measure, the change in normalized atheroma volume, showed a small favorable effect for torcetrapib (P=0.02), but there was no significant difference in the change in atheroma volume for the most diseased vessel segment. CONCLUSIONS The CETP inhibitor torcetrapib was associated with a substantial increase in HDL cholesterol and decrease in LDL cholesterol. It was also associated with an increase in blood pressure, and there was no significant decrease in the progression of coronary atherosclerosis. The lack of efficacy may be related to the mechanism of action of this drug class or to molecule-specific adverse effects. (ClinicalTrials.gov number, NCT00134173 [ClinicalTrials.gov].).

[1]  S. Kaul,et al.  Exploiting the Vascular Protective Effects of High-Density Lipoprotein and its Apolipoproteins: An Idea Whose Time for Testing Is Coming, Part II , 2001, Circulation.

[2]  F. Zimetti,et al.  Inhibition of CETP activity by torcetrapib reduces susceptibility to diet-induced atherosclerosis in New Zealand White rabbits Published, JLR Papers in Press, February 26, 2007. , 2007, Journal of Lipid Research.

[3]  M. Trip,et al.  Effectiveness of inhibition of cholesteryl ester transfer protein by JTT-705 in combination with pravastatin in type II dyslipidemia. , 2005, The American journal of cardiology.

[4]  E. Tuzcu,et al.  Variability of area measurements obtained with different intravascular ultrasound catheter systems: Impact on clinical trials and a method for accurate calibration. , 2003, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[5]  P. Libby,et al.  Vascular Biomarkers and Surrogates in Cardiovascular Disease , 2006, Circulation.

[6]  A. Tall,et al.  The failure of torcetrapib: was it the molecule or the mechanism? , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[7]  S. Reddy,et al.  Mechanisms of Disease: proatherogenic HDL—an evolving field , 2006, Nature Clinical Practice Endocrinology &Metabolism.

[8]  Fernando Alfonso,et al.  Effects of the Acyl Coenzyme A:Cholesterol Acyltransferase Inhibitor Avasimibe on Human Atherosclerotic Lesions , 2004, Circulation.

[9]  E. Bolson,et al.  Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. , 2001, The New England journal of medicine.

[10]  A. Tall,et al.  HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE- and ABCG1-dependent pathway. , 2006, The Journal of clinical investigation.

[11]  A. Tall,et al.  Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. , 1990, The New England journal of medicine.

[12]  R. Morton,et al.  Partial suppression of CETP activity beneficially modifies the lipid transfer profile of plasma. , 2007, Atherosclerosis.

[13]  P. Libby,et al.  Effect of Antihypertensive Agents on Cardiovascular Events in Patients With Coronary Disease and Normal Blood Pressure The CAMELOT Study: A Randomized Controlled Trial , 2004 .

[14]  Jeannie K. Lee,et al.  Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol (ARBITER) 2: A Double-Blind, Placebo-Controlled Study of Extended-Release Niacin on Atherosclerosis Progression in Secondary Prevention Patients Treated With Statins , 2004, Circulation.

[15]  G. Jensen,et al.  Elevated HDL cholesterol is a risk factor for ischemic heart disease in white women when caused by a common mutation in the cholesteryl ester transfer protein gene. , 2000, Circulation.

[16]  E. Tuzcu,et al.  Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease , 2005 .

[17]  Carl J Pepine,et al.  Effect of ACAT inhibition on the progression of coronary atherosclerosis. , 2006, The New England journal of medicine.

[18]  E. Tuzcu,et al.  Effects of normal, pre-hypertensive, and hypertensive blood pressure levels on progression of coronary atherosclerosis. , 2006, Journal of the American College of Cardiology.

[19]  D. Rader,et al.  Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. , 2004, The New England journal of medicine.

[20]  S. Yamashita,et al.  Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. , 1997, Arteriosclerosis, thrombosis, and vascular biology.

[21]  Bruce R. Brodie,et al.  Effect of Intensive Compared With Moderate Lipid-Lowering Therapy on Progression of Coronary Atherosclerosis A Randomized Controlled Trial , 2004 .

[22]  C. Tracy,et al.  American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. , 2001, Journal of the American College of Cardiology.

[23]  Jan Nilsson,et al.  Exploiting the Vascular Protective Effects of High-Density Lipoprotein and Its Apolipoproteins: An Idea Whose Time for Testing Is Coming, Part I , 2001, Circulation.

[24]  J. Kastelein,et al.  Cholesteryl ester transfer protein (CETP) inhibition beyond raising high-density lipoprotein cholesterol levels: pathways by which modulation of CETP activity may alter atherogenesis. , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[25]  Peter Libby,et al.  The forgotten majority: unfinished business in cardiovascular risk reduction. , 2005, Journal of the American College of Cardiology.

[26]  Michael Kinter,et al.  Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. , 2004, The Journal of clinical investigation.

[27]  D. Gordon,et al.  High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. , 1989, Circulation.

[28]  Raimund Erbel,et al.  Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. , 2006, JAMA.

[29]  Paul Schoenhagen,et al.  Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. , 2003, JAMA.

[30]  S. Yamashita,et al.  Pros and cons of inhibiting cholesteryl ester transfer protein , 2000, Current opinion in lipidology.

[31]  J. Mckenney,et al.  Efficacy and safety of torcetrapib, a novel cholesteryl ester transfer protein inhibitor, in individuals with below-average high-density lipoprotein cholesterol levels on a background of atorvastatin. , 2006, Journal of the American College of Cardiology.