Necessary and Sufficient Conditions for State Equivalence to a Nonlinear Discrete-Time Observer Canonical Form

In this technical note, we obtain necessary and sufficient conditions for a multi-input, multi-output, discrete-time nonlinear system to be state equivalent to a nonlinear observer form, and for an uncontrolled multi-output system to be state equivalent to a linear observer form. We adopt a geometric approach, and the proofs are constructive with respect to the required coordinate change.

[1]  Costas Kravaris,et al.  Discrete-time nonlinear observer design using functional equations , 2001 .

[2]  MingQing Xiao,et al.  A direct method for the construction of nonlinear discrete-time observer with linearizable error dynamics , 2006, IEEE Transactions on Automatic Control.

[3]  Peter Köchel,et al.  Finite queueing systems--structural investigations and optimal design , 2004 .

[4]  J. W. Roberts,et al.  A survey on statistical bandwidth sharing , 2004, Comput. Networks.

[5]  Kwanghee Nam,et al.  Observer design for autonomous discrete-time nonlinear systems , 1991 .

[6]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[7]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .

[8]  G. J. A. Stern,et al.  Queueing Systems, Volume 2: Computer Applications , 1976 .

[9]  J. Grizzle,et al.  The Extended Kalman Filter as a Local Asymptotic Observer for Nonlinear Discrete-Time Systems , 1992, 1992 American Control Conference.

[10]  A. Jagers,et al.  On the continued Erlang loss function , 1986 .

[11]  V. Sundarapandian,et al.  New results on general observers for discrete-time nonlinear systems , 2004, Appl. Math. Lett..

[12]  Ward Whitt,et al.  Counterexamples for comparisons of queues with finite waiting rooms , 1992, Queueing Syst. Theory Appl..

[13]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[14]  K. R. Krishnan The convexity of loss rate in an Erland loss system and sojourn in an Erlang delay system with respect to arrival and service rates , 1990, IEEE Trans. Commun..

[15]  J. W. GRIZZLEt Sampled-data Observer Error Linearization , 2022 .

[16]  Guillaume J.J. Ducard,et al.  Nonlinear Control Design , 2009 .

[17]  E. Messerli B.S.T.J. brief: Proof of a convexity property of the erlang B formula , 1972 .

[18]  António Pacheco Second-order properties of the loss probability inM/M/s/s +c systems , 1994, Queueing Syst. Theory Appl..

[19]  D. Yao,et al.  The Optimal Input Rates To A System Of Manufacturing Cells , 1987 .

[20]  A. Isidori Nonlinear Control Systems , 1985 .

[21]  Alfredo Germani,et al.  A robust observer for discrete time nonlinear systems , 1995 .

[22]  J. Grizzle,et al.  Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..

[23]  V. Sundarapandian,et al.  General observers for discrete-time nonlinear systems , 2004 .

[24]  Costas Kravaris,et al.  Nonlinear discrete-time observer design with linearizable error dynamics , 2003, IEEE Trans. Autom. Control..

[25]  F. Cruz,et al.  The buffer allocation problem for general finite buffer queueing networks , 2005 .

[26]  Won Chang Lee,et al.  Observers for Nonautonomous Discrete-Time Nonlinear Systems , 1991 .

[27]  A. Schaft Observability and Controllability for Smooth Nonlinear Systems , 1982 .

[28]  MingQing Xiao,et al.  Nonlinear Observer Design in the Siegel Domain , 2002, SIAM J. Control. Optim..

[29]  A. Arapostathis,et al.  Linearization of discrete-time systems , 1987 .

[30]  V. Sundarapandian,et al.  Observer design for discrete-time nonlinear systems , 2002 .

[31]  Hayriye Ayhan,et al.  A monotonicity result for a G/GI/c queue with balking or reneging , 2006, Journal of Applied Probability.

[32]  F. Kelly Routing in circuit-switched networks: optimization, shadow prices and decentralization , 1988, Advances in Applied Probability.

[33]  X. Xia,et al.  Non-linear observer design by observer canonical forms , 1988 .

[34]  D. Sonderman Comparing multi-server queues with finite waiting rooms, I: Same number of servers , 1979, Advances in Applied Probability.

[35]  Wei Lin,et al.  Remarks on linearization of discrete-time autonomous systems and nonlinear observer design , 1995 .

[36]  MingQing Xiao,et al.  Erratum: Nonlinear Observer Design in the Siegel Domain , 2004, SIAM J. Control. Optim..

[37]  Dorothée Normand-Cyrot,et al.  On the observer design in discrete-time , 2003, Syst. Control. Lett..

[38]  X. Xia,et al.  Nonlinear observer design by observer error linearization , 1989 .

[39]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .