Kernel-Based Hybrid Random Fields for Nonparametric Density Estimation
暂无分享,去创建一个
[1] Christopher M. Bishop,et al. Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .
[2] E. Nadaraya. On Estimating Regression , 1964 .
[3] Xiaohai Sun,et al. Distribution-Free Learning of Bayesian Network Structure , 2008, ECML/PKDD.
[4] Larry A. Wasserman,et al. The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs , 2009, J. Mach. Learn. Res..
[5] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[6] Judea Pearl,et al. Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.
[7] Volker Tresp,et al. Discovering Structure in Continuous Variables Using Bayesian Networks , 1995, NIPS.
[8] J. Besag. Statistical Analysis of Non-Lattice Data , 1975 .
[9] Marco Gori,et al. Scalable pseudo-likelihood estimation in hybrid random fields , 2009, KDD.
[10] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[11] Martin J. Wainwright,et al. Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of l1-regularized MLE , 2008, NIPS.
[12] Shigeo Abe DrEng. Pattern Classification , 2001, Springer London.
[13] Richard E. Neapolitan,et al. Learning Bayesian networks , 2007, KDD '07.
[14] V. A. Epanechnikov. Non-Parametric Estimation of a Multivariate Probability Density , 1969 .
[15] Dimitris Margaritis,et al. Distribution-Free Learning of Bayesian Network Structure in Continuous Domains , 2005, AAAI.
[16] Alexander G. Gray,et al. Fast Nonparametric Conditional Density Estimation , 2007, UAI.
[17] J. Kenney,et al. Mathematics of statistics , 1940 .
[18] Michael I. Jordan,et al. Learning Graphical Models with Mercer Kernels , 2002, NIPS.
[19] P. J. Green,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[20] Volker Tresp,et al. Nonlinear Markov Networks for Continuous Variables , 1997, NIPS.
[21] Andrew W. Moore,et al. 'N-Body' Problems in Statistical Learning , 2000, NIPS.
[22] G. S. Watson,et al. Smooth regression analysis , 1964 .
[23] Judea Pearl,et al. Probabilistic reasoning in intelligent systems , 1988 .
[24] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[25] Bin Yu,et al. Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of boldmathell_1-regularized MLE , 2008, NIPS 2008.
[26] Marco Gori,et al. A hybrid random field model for scalable statistical learning , 2009, Neural Networks.
[27] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .