Categorical and Kripke Semantics for Constructive S4 Modal Logic

We consider two systems of constructive modal logic which are computationally motivated. Their modalities admit several computational interpretations and are used to capture intensional features such as notions of computation, constraints, concurrency, etc. Both systems have so far been studied mainly from type-theoretic and category-theoretic perspectives, but Kripke models for similar systems were studied independently. Here we bring these threads together and prove duality results which show how to relate Kripke models to algebraic models and these in turn to the appropriate categorical models for these logics.

[1]  A. S. Troelstra,et al.  Constructivism in Mathematics, Volume 2 , 1991 .

[2]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[3]  Frank Pfenning,et al.  Primitive recursion for higher-order abstract syntax , 1997, Theoretical Computer Science.

[4]  Gordon D. Plotkin,et al.  A Framework for Intuitionistic Modal Logics , 1988, TARK.

[5]  F. Wolter,et al.  Intuitionistic Modal Logics as Fragments of Classical Bimodal Logics , 1997 .

[6]  W. B. Ewald,et al.  Intuitionistic tense and modal logic , 1986, Journal of Symbolic Logic.

[7]  Duminda Wijesekera,et al.  Constructive Modal Logics I , 1990, Ann. Pure Appl. Log..

[8]  Gisèle Fischer Servi,et al.  Semantics for a Class of Intuitionistic Modal Calculi , 1980 .

[9]  R. Goldblatt Metamathematics of modal logic , 1974, Bulletin of the Australian Mathematical Society.

[10]  Frank Pfenning,et al.  A modal analysis of staged computation , 1996, POPL '96.

[11]  D. Macnab Modal operators on Heyting algebras , 1981 .

[12]  Michael Mendler Characterising Combinational Timing Analyses in Intuitionistic Modal Logic , 2000, Log. J. IGPL.

[13]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[14]  Michael Mendler,et al.  First-order Lax Logic as a framework for Constraint Logic Programming , 1997 .

[15]  A. Troelstra Constructivism in mathematics , 1988 .

[16]  Michael V. Mendler A modal logic for handling behavioural constraints in formal hardware verification , 1992 .

[17]  Haskell B. Curry,et al.  A Theory Of Formal Deducibility , 1950 .

[18]  Jean Goubault-larrecq,et al.  Logical Foundations of Eval/Quote Mechanisms, and the Modal Logic S4 , 1997 .

[19]  F. Wolter,et al.  Intuitionistic Modal Logic , 1999 .

[20]  Neil Ghani,et al.  Explicit Substitutions for Constructive Necessity , 1998, ICALP.

[21]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[22]  Satoshi Kobayashi,et al.  Monad as Modality , 1997, Theor. Comput. Sci..

[23]  Gordon Plotkin,et al.  A framework for intuitionistic modal logics: extended abstract , 1986 .

[24]  Robert Ian Goldblatt,et al.  Grothendieck Topology as Geometric Modality , 1981, Math. Log. Q..

[25]  Frank Pfenning,et al.  Primitive recursion for higher-order abstract syntax , 1997, Theor. Comput. Sci..

[26]  R. Goldblatt Mathematics of modality , 1993 .

[27]  Walid Taha,et al.  Logical Modalities and Multi-Stage Programming , 1999 .

[28]  Kit Fine,et al.  An incomplete logic containing S4 , 1974 .

[29]  B. Hilken Topological duality for intuitionistic modal algebras , 2000 .

[30]  Nick Benton,et al.  Computational types from a logical perspective , 1998, Journal of Functional Programming.

[31]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[32]  Michael Mendler,et al.  Propositional Lax Logic , 1997, Inf. Comput..

[33]  S. K. Thomason,et al.  An incompleteness theorem in modal logic , 1974 .

[34]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[35]  Frank Pfenning,et al.  A judgmental reconstruction of modal logic , 2001, Mathematical Structures in Computer Science.

[36]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..