An optical-lattice-based quantum simulator for relativistic field theories and topological insulators

We present a proposal for a versatile cold-atom-based quantum simulator of relativistic fermionic theories and topological insulators in arbitrary dimensions. The setup consists of a spin-independent optical lattice that traps a collection of hyperfine states of the same alkaline atom, to which the different degrees of freedom of the field theory to be simulated are then mapped. We show that the combination of bi-chromatic optical lattices with Raman transitions can allow the engineering of a spin-dependent tunneling of the atoms between neighboring lattice sites. These assisted-hopping processes can be employed for the quantum simulation of various interesting models, ranging from non- interacting relativistic fermionic theories to topological insulators. We present a toolbox for the realization of different types of relativistic lattice fermions, which can then be exploited to synthesize a majority of phases in the periodic table of topological insulators.

[1]  W. Xie,et al.  Structure and sources of disorder in poly(3-hexylthiophene) crystals investigated by density functional calculations with van der Waals interactions , 2011 .

[2]  D. B. Kaplan A Method for simulating chiral fermions on the lattice , 1992 .

[3]  M. Lukin,et al.  Fractional quantum Hall states of atoms in optical lattices. , 2004, Physical Review Letters.

[4]  S. Fujimoto,et al.  Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms. , 2009, Physical review letters.

[5]  R. Compton,et al.  Dynamically slowed collapse of a Bose-Einstein condensate with attractive interactions , 2012, 1207.2645.

[6]  C. Salomon,et al.  Exploring the thermodynamics of a universal Fermi gas , 2009, Nature.

[7]  Xiong-Jun Liu,et al.  Quantum anomalous Hall effect with cold atoms trapped in a square lattice , 2010, 1003.2736.

[8]  E. J. Mele,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[9]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[10]  A. Trombettoni,et al.  Non-Abelian anions from degenerate landau levels of ultracold atoms in artificial gauge potentials. , 2010, Physical review letters.

[11]  Massimo Inguscio,et al.  Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.

[12]  M. Lewenstein,et al.  Realistic time-reversal invariant topological insulators with neutral atoms. , 2010, Physical review letters.

[13]  Antonino Zichichi,et al.  New phenomena in subnuclear physics , 1977 .

[14]  P Zoller,et al.  Cold atoms in non-Abelian gauge potentials: from the Hofstadter "moth" to lattice gauge theory. , 2005, Physical review letters.

[15]  L. Karsten,et al.  Lattice Fermions: Species Doubling, Chiral Invariance, and the Triangle Anomaly , 1981 .

[16]  I. B. Spielman,et al.  Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.

[17]  S. Sarma,et al.  Topological states in two-dimensional optical lattices , 2009, 0912.3559.

[18]  I. B. Spielman,et al.  Synthetic magnetic fields for ultracold neutral atoms , 2009, Nature.

[19]  Xiong-Jun Liu,et al.  Massless Dirac fermions in a square optical lattice , 2009, 0902.4746.

[20]  N. Cooper,et al.  Composite fermion theory for bosonic quantum Hall states on lattices. , 2009, Physical review letters.

[21]  D. Jaksch,et al.  Optical lattice quantum Hall effect , 2008, 0803.3771.

[22]  Alan J. Heeger,et al.  Solitons in polyacetylene , 1979 .

[23]  Walter Kohn,et al.  Analytic Properties of Bloch Waves and Wannier Functions , 1959 .

[24]  F. Wilczek,et al.  Two applications of axion electrodynamics. , 1987, Physical review letters.

[25]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[26]  L. Amico,et al.  Topology-induced anomalous defect production by crossing a quantum critical point. , 2008, Physical review letters.

[27]  P. Zoller,et al.  Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms , 2003, quant-ph/0304038.

[28]  L. Duan,et al.  Probing non-abelian statistics of Majorana fermions in ultracold atomic superfluid. , 2010, Physical review letters.

[29]  P. Gaspard,et al.  Ultracold atomic gases in non-Abelian gauge potentials: The case of constant Wilson loop , 2009, 0902.3228.

[30]  J. Dalibard,et al.  Gauge fields for ultracold atoms in optical superlattices , 2009, 0910.4606.

[31]  N. Cooper,et al.  Z(2) topological insulators in ultracold atomic gases. , 2011, Physical review letters.

[32]  G. E. Volovik,et al.  High-temperature surface superconductivity in topological flat-band systems , 2011, 1103.2033.

[33]  V. Gurarie Single-particle Green’s functions and interacting topological insulators , 2010, 1011.2273.

[34]  M. Lewenstein,et al.  Topological phase transitions in the non-Abelian honeycomb lattice , 2009, 0909.5161.

[35]  K. Klitzing The quantized Hall effect , 1986 .

[36]  Kenneth G. Wilson,et al.  Quarks and Strings on a Lattice , 1977 .

[37]  P. Gaspard,et al.  Non-Abelian optical lattices: anomalous quantum Hall effect and Dirac fermions. , 2009, Physical review letters.

[38]  John B. Kogut,et al.  The lattice gauge theory approach to quantum chromodynamics , 1983 .

[39]  A. Trombettoni,et al.  (3+1) massive Dirac fermions with ultracold atoms in frustrated cubic optical lattices , 2010, 1004.4744.

[40]  C. Chamon,et al.  Fractional quantum Hall states at zero magnetic field. , 2010, Physical review letters.

[41]  G. Volovik,et al.  Dimensional crossover in topological matter: Evolution of the multiple Dirac point in the layered system to the flat band on the surface , 2010, 1011.4185.

[42]  M. Lewenstein,et al.  Topological superfluids on a lattice with non-Abelian gauge fields , 2010, 1007.4827.

[43]  Z. Wang,et al.  Realizing and detecting the quantum Hall effect without landau levels by using ultracold atoms. , 2008, Physical review letters.

[44]  Alexei Kitaev,et al.  Topological phases of fermions in one dimension , 2010, 1008.4138.

[45]  Topological insulators and superconductors from string theory , 2010, 1007.4234.

[46]  W. Phillips,et al.  A synthetic electric force acting on neutral atoms , 2010, 1008.4864.

[47]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[48]  Jiadong Zang,et al.  Inducing a Magnetic Monopole with Topological Surface States , 2009, Science.

[49]  G. Volovik Flat band in the core of topological defects: Bulk-vortex correspondence in topological superfluids with Fermi points , 2010, 1011.4665.

[50]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[51]  M. Lewenstein,et al.  Dirac equation for cold atoms in artificial curved spacetimes , 2010, 1010.1716.

[52]  A. Hemmerich,et al.  Strongly interacting two-dimensional Dirac fermions , 2009, 0905.1281.

[53]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[54]  Shi-Liang Zhu,et al.  Simulation and detection of dirac fermions with cold atoms in an optical lattice. , 2007, Physical review letters.

[55]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[56]  J. Cirac,et al.  Emerging bosons with three-body interactions from spin-1 atoms in optical lattices , 2010, 1007.2344.

[57]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (II). Intuitive topological proof , 1981 .

[58]  R. Feynman Simulating physics with computers , 1999 .

[59]  M. Lukin,et al.  Fractional quantum Hall effect in optical lattices , 2006, 0706.0757.

[60]  Hosho Katsura,et al.  Nearly flatbands with nontrivial topology. , 2010, Physical review letters.

[61]  G. Sterman An Introduction To Quantum Field Theory , 1994 .

[62]  Shinsei Ryu,et al.  Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.

[63]  N. Cooper Optical flux lattices for ultracold atomic gases. , 2011, Physical review letters.

[64]  Z. F. Ezawa Quantum Hall Effects: Field Theoretical Approach and Related Topics , 2000 .

[65]  J. Cirac,et al.  Cold atom simulation of interacting relativistic quantum field theories. , 2010, Physical review letters.

[66]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (I). Proof by homotopy theory , 1981 .

[67]  M. Creutz End States, Ladder Compounds, and Domain-Wall Fermions , 1999, hep-lat/9902028.

[68]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[69]  Shinsei Ryu,et al.  Topological insulators and superconductors: tenfold way and dimensional hierarchy , 2009, 0912.2157.

[70]  David E. Pritchard,et al.  Itinerant Ferromagnetism in a Fermi Gas of Ultracold Atoms , 2009, Science.

[71]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[72]  Alexei Kitaev,et al.  Periodic table for topological insulators and superconductors , 2009, 0901.2686.

[73]  N. Goldman,et al.  Dirac-Weyl fermions with arbitrary spin in two-dimensional optical superlattices , 2011, 1102.5283.

[74]  J. Dalibard,et al.  Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.

[75]  X. Qi,et al.  Topological order parameters for interacting topological insulators. , 2010, Physical review letters.

[76]  Xiao-Gang Wen,et al.  High-temperature fractional quantum Hall states. , 2010, Physical review letters.

[77]  B. Halperin Quantized Hall conductance, current carrying edge states, and the existence of extended states in a two-dimensional disordered potential , 1982 .

[78]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[79]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[80]  Michael Köhl,et al.  Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions. , 2005, Physical review letters.

[81]  N. Goldman,et al.  Topological Phases for Fermionic Cold Atoms on the Lieb Lattice , 2011, 1101.4500.

[82]  R. Schutzhold,et al.  Quantum simulator for the Schwinger effect with atoms in bichromatic optical lattices , 2011, 1103.0541.

[83]  G. Volovik,et al.  Fermions with cubic and quartic spectrum , 2010, 1010.0393.

[84]  Fractional quantum Hall states in the vicinity of Mott plateaus , 2010, 1002.4099.

[85]  A. Aspect,et al.  Direct observation of Anderson localization of matter waves in a controlled disorder , 2008, Nature.

[86]  M. Lewenstein,et al.  Wilson fermions and axion electrodynamics in optical lattices. , 2010, Physical review letters.

[87]  W. M. Liu,et al.  Simulating and detecting the quantum spin Hall effect in the kagome optical lattice , 2010, 1007.4637.

[88]  Frank Pollmann,et al.  Topological Phases of One-Dimensional Fermions: An Entanglement Point of View , 2010, 1008.4346.

[89]  Berthold-Georg Englert,et al.  Ultracold fermions in a graphene-type optical lattice , 2009, 0906.4158.