An optical-lattice-based quantum simulator for relativistic field theories and topological insulators
暂无分享,去创建一个
Maciej Lewenstein | Miguel Angel Martin-Delgado | Nathan Goldman | Alejandro Bermudez | Matteo Rizzi | Leonardo Mazza | M. Lewenstein | N. Goldman | M. Martin-Delgado | A. Bermudez | M. Rizzi | L. Mazza
[1] W. Xie,et al. Structure and sources of disorder in poly(3-hexylthiophene) crystals investigated by density functional calculations with van der Waals interactions , 2011 .
[2] D. B. Kaplan. A Method for simulating chiral fermions on the lattice , 1992 .
[3] M. Lukin,et al. Fractional quantum Hall states of atoms in optical lattices. , 2004, Physical Review Letters.
[4] S. Fujimoto,et al. Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms. , 2009, Physical review letters.
[5] R. Compton,et al. Dynamically slowed collapse of a Bose-Einstein condensate with attractive interactions , 2012, 1207.2645.
[6] C. Salomon,et al. Exploring the thermodynamics of a universal Fermi gas , 2009, Nature.
[7] Xiong-Jun Liu,et al. Quantum anomalous Hall effect with cold atoms trapped in a square lattice , 2010, 1003.2736.
[8] E. J. Mele,et al. Quantum spin Hall effect in graphene. , 2004, Physical review letters.
[9] P. Anderson. Absence of Diffusion in Certain Random Lattices , 1958 .
[10] A. Trombettoni,et al. Non-Abelian anions from degenerate landau levels of ultracold atoms in artificial gauge potentials. , 2010, Physical review letters.
[11] Massimo Inguscio,et al. Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.
[12] M. Lewenstein,et al. Realistic time-reversal invariant topological insulators with neutral atoms. , 2010, Physical review letters.
[13] Antonino Zichichi,et al. New phenomena in subnuclear physics , 1977 .
[14] P Zoller,et al. Cold atoms in non-Abelian gauge potentials: from the Hofstadter "moth" to lattice gauge theory. , 2005, Physical review letters.
[15] L. Karsten,et al. Lattice Fermions: Species Doubling, Chiral Invariance, and the Triangle Anomaly , 1981 .
[16] I. B. Spielman,et al. Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.
[17] S. Sarma,et al. Topological states in two-dimensional optical lattices , 2009, 0912.3559.
[18] I. B. Spielman,et al. Synthetic magnetic fields for ultracold neutral atoms , 2009, Nature.
[19] Xiong-Jun Liu,et al. Massless Dirac fermions in a square optical lattice , 2009, 0902.4746.
[20] N. Cooper,et al. Composite fermion theory for bosonic quantum Hall states on lattices. , 2009, Physical review letters.
[21] D. Jaksch,et al. Optical lattice quantum Hall effect , 2008, 0803.3771.
[22] Alan J. Heeger,et al. Solitons in polyacetylene , 1979 .
[23] Walter Kohn,et al. Analytic Properties of Bloch Waves and Wannier Functions , 1959 .
[24] F. Wilczek,et al. Two applications of axion electrodynamics. , 1987, Physical review letters.
[25] D. Thouless,et al. Quantized Hall conductance in a two-dimensional periodic potential , 1992 .
[26] L. Amico,et al. Topology-induced anomalous defect production by crossing a quantum critical point. , 2008, Physical review letters.
[27] P. Zoller,et al. Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms , 2003, quant-ph/0304038.
[28] L. Duan,et al. Probing non-abelian statistics of Majorana fermions in ultracold atomic superfluid. , 2010, Physical review letters.
[29] P. Gaspard,et al. Ultracold atomic gases in non-Abelian gauge potentials: The case of constant Wilson loop , 2009, 0902.3228.
[30] J. Dalibard,et al. Gauge fields for ultracold atoms in optical superlattices , 2009, 0910.4606.
[31] N. Cooper,et al. Z(2) topological insulators in ultracold atomic gases. , 2011, Physical review letters.
[32] G. E. Volovik,et al. High-temperature surface superconductivity in topological flat-band systems , 2011, 1103.2033.
[33] V. Gurarie. Single-particle Green’s functions and interacting topological insulators , 2010, 1011.2273.
[34] M. Lewenstein,et al. Topological phase transitions in the non-Abelian honeycomb lattice , 2009, 0909.5161.
[35] K. Klitzing. The quantized Hall effect , 1986 .
[36] Kenneth G. Wilson,et al. Quarks and Strings on a Lattice , 1977 .
[37] P. Gaspard,et al. Non-Abelian optical lattices: anomalous quantum Hall effect and Dirac fermions. , 2009, Physical review letters.
[38] John B. Kogut,et al. The lattice gauge theory approach to quantum chromodynamics , 1983 .
[39] A. Trombettoni,et al. (3+1) massive Dirac fermions with ultracold atoms in frustrated cubic optical lattices , 2010, 1004.4744.
[40] C. Chamon,et al. Fractional quantum Hall states at zero magnetic field. , 2010, Physical review letters.
[41] G. Volovik,et al. Dimensional crossover in topological matter: Evolution of the multiple Dirac point in the layered system to the flat band on the surface , 2010, 1011.4185.
[42] M. Lewenstein,et al. Topological superfluids on a lattice with non-Abelian gauge fields , 2010, 1007.4827.
[43] Z. Wang,et al. Realizing and detecting the quantum Hall effect without landau levels by using ultracold atoms. , 2008, Physical review letters.
[44] Alexei Kitaev,et al. Topological phases of fermions in one dimension , 2010, 1008.4138.
[45] Topological insulators and superconductors from string theory , 2010, 1007.4234.
[46] W. Phillips,et al. A synthetic electric force acting on neutral atoms , 2010, 1008.4864.
[47] Seth Lloyd,et al. Universal Quantum Simulators , 1996, Science.
[48] Jiadong Zang,et al. Inducing a Magnetic Monopole with Topological Surface States , 2009, Science.
[49] G. Volovik. Flat band in the core of topological defects: Bulk-vortex correspondence in topological superfluids with Fermi points , 2010, 1011.4665.
[50] F. Guinea,et al. The electronic properties of graphene , 2007, Reviews of Modern Physics.
[51] M. Lewenstein,et al. Dirac equation for cold atoms in artificial curved spacetimes , 2010, 1010.1716.
[52] A. Hemmerich,et al. Strongly interacting two-dimensional Dirac fermions , 2009, 0905.1281.
[53] Haldane,et al. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.
[54] Shi-Liang Zhu,et al. Simulation and detection of dirac fermions with cold atoms in an optical lattice. , 2007, Physical review letters.
[55] X. Qi,et al. Topological insulators and superconductors , 2010, 1008.2026.
[56] J. Cirac,et al. Emerging bosons with three-body interactions from spin-1 atoms in optical lattices , 2010, 1007.2344.
[57] H. Nielsen,et al. Absence of neutrinos on a lattice: (II). Intuitive topological proof , 1981 .
[58] R. Feynman. Simulating physics with computers , 1999 .
[59] M. Lukin,et al. Fractional quantum Hall effect in optical lattices , 2006, 0706.0757.
[60] Hosho Katsura,et al. Nearly flatbands with nontrivial topology. , 2010, Physical review letters.
[61] G. Sterman. An Introduction To Quantum Field Theory , 1994 .
[62] Shinsei Ryu,et al. Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.
[63] N. Cooper. Optical flux lattices for ultracold atomic gases. , 2011, Physical review letters.
[64] Z. F. Ezawa. Quantum Hall Effects: Field Theoretical Approach and Related Topics , 2000 .
[65] J. Cirac,et al. Cold atom simulation of interacting relativistic quantum field theories. , 2010, Physical review letters.
[66] H. Nielsen,et al. Absence of neutrinos on a lattice: (I). Proof by homotopy theory , 1981 .
[67] M. Creutz. End States, Ladder Compounds, and Domain-Wall Fermions , 1999, hep-lat/9902028.
[68] C. Kane,et al. Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.
[69] Shinsei Ryu,et al. Topological insulators and superconductors: tenfold way and dimensional hierarchy , 2009, 0912.2157.
[70] David E. Pritchard,et al. Itinerant Ferromagnetism in a Fermi Gas of Ultracold Atoms , 2009, Science.
[71] Xiao-Liang Qi,et al. Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.
[72] Alexei Kitaev,et al. Periodic table for topological insulators and superconductors , 2009, 0901.2686.
[73] N. Goldman,et al. Dirac-Weyl fermions with arbitrary spin in two-dimensional optical superlattices , 2011, 1102.5283.
[74] J. Dalibard,et al. Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.
[75] X. Qi,et al. Topological order parameters for interacting topological insulators. , 2010, Physical review letters.
[76] Xiao-Gang Wen,et al. High-temperature fractional quantum Hall states. , 2010, Physical review letters.
[77] B. Halperin. Quantized Hall conductance, current carrying edge states, and the existence of extended states in a two-dimensional disordered potential , 1982 .
[78] J. Dalibard,et al. Many-Body Physics with Ultracold Gases , 2007, 0704.3011.
[79] C. Gardiner,et al. Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.
[80] Michael Köhl,et al. Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions. , 2005, Physical review letters.
[81] N. Goldman,et al. Topological Phases for Fermionic Cold Atoms on the Lieb Lattice , 2011, 1101.4500.
[82] R. Schutzhold,et al. Quantum simulator for the Schwinger effect with atoms in bichromatic optical lattices , 2011, 1103.0541.
[83] G. Volovik,et al. Fermions with cubic and quartic spectrum , 2010, 1010.0393.
[84] Fractional quantum Hall states in the vicinity of Mott plateaus , 2010, 1002.4099.
[85] A. Aspect,et al. Direct observation of Anderson localization of matter waves in a controlled disorder , 2008, Nature.
[86] M. Lewenstein,et al. Wilson fermions and axion electrodynamics in optical lattices. , 2010, Physical review letters.
[87] W. M. Liu,et al. Simulating and detecting the quantum spin Hall effect in the kagome optical lattice , 2010, 1007.4637.
[88] Frank Pollmann,et al. Topological Phases of One-Dimensional Fermions: An Entanglement Point of View , 2010, 1008.4346.
[89] Berthold-Georg Englert,et al. Ultracold fermions in a graphene-type optical lattice , 2009, 0906.4158.