Improved aptazyme design and in vivo screening enable riboswitching in bacteria.

[1]  H. Lodish Molecular Cell Biology , 1986 .

[2]  A. Scarpa,et al.  Regulation of cell magnesium. , 1992, Archives of biochemistry and biophysics.

[3]  A. Pardi,et al.  High-resolution molecular discrimination by RNA. , 1994, Science.

[4]  M. Green,et al.  Controlling gene expression in living cells through small molecule-RNA interactions. , 1998, Science.

[5]  R. Breaker,et al.  Engineering precision RNA molecular switches. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Jack W. Szostak,et al.  In vitro evolution suggests multiple origins for the hammerhead ribozyme , 2001, Nature.

[7]  Amy C Yan,et al.  Protein-dependent ribozymes report molecular interactions in real time , 2002, Nature Biotechnology.

[8]  Ronald R. Breaker,et al.  Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression , 2002, Nature.

[9]  David J. Worhunsky,et al.  Translational repression mechanisms in prokaryotes , 2003, Molecular microbiology.

[10]  Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity , 2003, Nature Structural Biology.

[11]  Anastasia Khvorova,et al.  Fast cleavage kinetics of a natural hammerhead ribozyme. , 2004, Journal of the American Chemical Society.

[12]  B. Suess,et al.  A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. , 2004, Nucleic acids research.

[13]  R. D'Amato,et al.  Exogenous control of mammalian gene expression through modulation of RNA self-cleavage , 2004, Nature.

[14]  R. Breaker,et al.  Control of gene expression by a natural metabolite-responsive ribozyme , 2004, Nature.

[15]  S. K. Desai,et al.  Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. , 2004, Journal of the American Chemical Society.

[16]  R. Breaker,et al.  Regulation of bacterial gene expression by riboswitches. , 2005, Annual review of microbiology.

[17]  W. Scott,et al.  Tertiary Contacts Distant from the Active Site Prime a Ribozyme for Catalysis , 2006, Cell.

[18]  Ralph Weissleder,et al.  Identification of inhibitors of ribozyme self-cleavage in mammalian cells via high-throughput screening of chemical libraries. , 2006, RNA.

[19]  S. K. Desai,et al.  A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. , 2007, Chemistry & biology.

[20]  J. Gallivan,et al.  Guiding bacteria with small molecules and RNA. , 2007, Journal of the American Chemical Society.

[21]  Irnov Irnov,et al.  Mechanism of mRNA destabilization by the glmS ribozyme. , 2007, Genes & development.

[22]  M. Win,et al.  A modular and extensible RNA-based gene-regulatory platform for engineering cellular function , 2007, Proceedings of the National Academy of Sciences.