Numerical Determination of Time-Dependent Implied Volatility by a Point Observation

[1]  Xu Yang,et al.  The calibration of stochastic local-volatility models: An inverse problem perspective , 2017, Comput. Math. Appl..

[2]  Peter A. Forsyth,et al.  Analysis of the stability of the linear boundary condition for the Black–Scholes equation , 2004 .

[3]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[4]  Y. Kwok Mathematical models of financial derivatives , 2008 .

[5]  Stability of central finite difference schemes on non-uniform grids for the Black--Scholes equation , 2009 .

[6]  Jiang Lishang,et al.  Identifying the volatility of underlying assets from option prices , 2001 .

[7]  Peter Nash Pricing Financial Instruments , 2017 .

[8]  M. V. Klibanov,et al.  Numerical identification of the leading coefficient of a parabolic equation , 2016 .

[9]  A. Samarskii The Theory of Difference Schemes , 2001 .

[10]  Giuseppe Orlando,et al.  A review on implied volatility calculation , 2017, J. Comput. Appl. Math..

[11]  Lishang Jiang Mathematical Modeling and Methods of Option Pricing , 2005 .

[12]  Liu Yang,et al.  An inverse problem of determining the implied volatility in option pricing , 2008 .

[13]  Radoslav L. Valkov,et al.  American option pricing problem transformed on finite interval , 2016, Int. J. Comput. Math..

[14]  O. Pironneau,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[15]  V. Isakov Recovery of time dependent volatility coefficient by linearization , 2013, 1307.4781.

[16]  Recovery of time-dependent volatility in option pricing model* , 2016 .

[17]  Radoslav L. Valkov Fitted finite volume method for a generalized Black–Scholes equation transformed on finite interval , 2013, Numerical Algorithms.