Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane

[1]  G. Guo,et al.  Au/3DOM La0.6Sr0.4MnO3: Highly active nanocatalysts for the oxidation of carbon monoxide and toluene , 2013 .

[2]  G. Guo,et al.  Au/3DOM LaCoO3: High-performance catalysts for the oxidation of carbon monoxide and toluene , 2013 .

[3]  H. Arandiyan,et al.  Three-dimensionally ordered macroporous InVO4: Fabrication and excellent visible-light-driven photocatalytic performance for methylene blue degradation , 2013 .

[4]  A. D. Benedetto,et al.  High pressure kinetics of CH4, CO and H2 combustion over LaMnO3 catalyst , 2013 .

[5]  Sun Young Park,et al.  Synthesis of nano-crystalline La1―xSrxCoO3―δ perovskite oxides by EDTA-citrate complexing process and its catalytic activity for soot oxidation , 2012 .

[6]  H. Arandiyan,et al.  Methane reforming to syngas over LaNixFe1−xO3 (0 ≤ x ≤ 1) mixed-oxide perovskites in the presence of CO2 and O2 , 2012 .

[7]  R. Hayes,et al.  Kinetics of methane combustion over Pt and Pt–Pd catalysts , 2012 .

[8]  Lei Zhang,et al.  Lysine-aided PMMA-templating preparation and high performance of three-dimensionally ordered macroporous LaMnO3 with mesoporous walls for the catalytic combustion of toluene , 2012 .

[9]  F. Toniolo,et al.  Structural investigation of LaCoO3 and LaCoCuO3 perovskite-type oxides and the effect of Cu on coke deposition in the partial oxidation of methane , 2012 .

[10]  C. Au,et al.  Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation. , 2012, Nanoscale.

[11]  C. Au,et al.  Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene , 2012 .

[12]  Rongrong Chen,et al.  Nickel-based perovskite catalysts with iron-doping via self-combustion for hydrogen production in auto-thermal reforming of Ethanol , 2012 .

[13]  B. Nematollahi,et al.  Autothermal reforming of methane over Ni catalysts supported on nanocrystalline MgO with high surfac , 2011 .

[14]  W. Ueda,et al.  Preparation and formation mechanism of three-dimensionally ordered macroporous (3DOM) MgO, MgSO4, CaCO3, and SrCO3, and photonic stop band properties of 3DOM CaCO3 , 2011 .

[15]  X. Verykios,et al.  Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on γ-Al2O3 , 2011 .

[16]  Lei Zhang,et al.  P123-PMMA dual-templating generation and unique physicochemical properties of three-dimensionally ordered macroporous iron oxides with nanovoids in the crystalline walls. , 2011, Inorganic chemistry.

[17]  Yue Zhang,et al.  Hydrothermal synthesis and catalytic performance of single-crystalline La2−xSrxCuO4 for methane oxidation , 2010 .

[18]  W. Ueda,et al.  Preparation of three-dimensionally ordered macroporous perovskite-type lanthanum–iron-oxide LaFeO3 with tunable pore diameters: High porosity and photonic property , 2010 .

[19]  T. Masui,et al.  Total oxidation of toluene on Pt/CeO2-ZrO2-Bi2O3/gamma-Al2O3 catalysts prepared in the presence of polyvinyl pyrrolidone. , 2010, Journal of hazardous materials.

[20]  J. Conesa,et al.  Structural, catalytic/redox and electrical characterization of systems combining Cu–Ni with CeO2 or Ce1−xMxO2−δ (M = Gd or Tb) for direct methane oxidation , 2009 .

[21]  Wenjie Shen,et al.  Low-temperature oxidation of CO catalysed by Co3O4 nanorods , 2009, Nature.

[22]  Lei Zhang,et al.  Facile synthesis and unique physicochemical properties of three-dimensionally ordered macroporous magnesium oxide, gamma-alumina, and ceria-zirconia solid solutions with crystalline mesoporous walls. , 2009, Inorganic chemistry.

[23]  V. Pârvulescu,et al.  Total oxidation of toluene on ferrite-type catalysts , 2009 .

[24]  C. Au,et al.  Hydrothermally fabricated single-crystalline strontium-substituted lanthanum manganite microcubes for the catalytic combustion of toluene , 2009 .

[25]  M. Stoukides,et al.  Preparation, active phase composition and Pd content of perovskite-type oxides , 2008 .

[26]  Lei Zhang,et al.  Surfactant-Aided Hydrothermal Synthesis and Carbon Dioxide Adsorption Behavior of Three-Dimensionally Mesoporous Calcium Oxide Single-Crystallites with Tri-, Tetra-, and Hexagonal Morphologies , 2008 .

[27]  S. Kaliaguine,et al.  Methanol oxidation on LaBO3 (B = Co, Mn, Fe) perovskite-type catalysts prepared by reactive grinding , 2008 .

[28]  W. Ueda,et al.  Facile Preparation of Three-Dimensionally Ordered Macroporous Alumina, Iron Oxide, Chromium Oxide, Manganese Oxide, and Their Mixed-Metal Oxides with High Porosity , 2007 .

[29]  Fei Teng,et al.  Effect of Jahn−Teller Distortion in La0.5Sr0.5MnO3 Cubes and Nanoparticles on the Catalytic Oxidation of CO and CH4 , 2007 .

[30]  Wei Liu,et al.  Nanosized perovskite-type oxides La1−xSrxMO3−δ (M = Co, Mn; x = 0, 0.4) for the catalytic removal of ethylacetate , 2007 .

[31]  G. Russo,et al.  Pd–LaMnO3 as dual site catalysts for methane combustion , 2007 .

[32]  J. Conesa,et al.  Catalytic properties of monometallic copper and bimetallic copper-nickel systems combined with ceria and Ce-X (X = Gd, Tb) mixed oxides applicable as SOFC anodes for direct oxidation of methane , 2007 .

[33]  Liang Shu,et al.  Effect of Cu Doping on the Structure and Catalytic Activity of LaMnO_3 Catalyst , 2007 .

[34]  S. Järås,et al.  Microemulsion synthesis of MgO-supported LaMnO3 for catalytic combustion of methane , 2006 .

[35]  M. Vannice,et al.  Solvent effects in liquid-phase reactions: I. Activity and selectivity during citral hydrogenation on Pt/SiO2 and evaluation of mass transfer effects , 2006 .

[36]  V. Pârvulescu,et al.  Supported perovskites for total oxidation of toluene , 2005 .

[37]  J. Kubo,et al.  Facile Procedure To Prepare Three-Dimensionally Ordered Macroporous (3DOM) Perovskite-type Mixed Metal Oxides by Colloidal Crystal Templating Method , 2005 .

[38]  J. Robertson,et al.  Methane combustion over Pd/SiO2 catalysts with different degrees of hydrophobicity , 2005 .

[39]  M. J. Pérez-Zurita,et al.  Perovskites as catalysts precursors: synthesis and characterization , 2005 .

[40]  A. Zaopo,et al.  Effect of preparation method on activity and stability of LaMnO3 and LaCoO3 catalysts for the flameless combustion of methane , 2005 .

[41]  Alexis T. Bell,et al.  Effects of molybdena on the catalytic properties of vanadia domains supported on alumina for oxidative dehydrogenation of propane , 2004 .

[42]  T. Okamoto,et al.  Self-regeneration of a Pd-perovskite catalyst for automotive emissions control , 2002, Nature.

[43]  J. Fierro,et al.  Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites , 2000 .

[44]  J. Geus,et al.  The effect of water on the activity of supported palladium catalysts in the catalytic combustion of methane , 1999 .

[45]  M. Morris,et al.  Catalytic oxidation over lanthanum-transition metal perovskite materials , 1999 .

[46]  E. Ruckenstein,et al.  CH4 TPR-MS of NiO/MgO solid solution catalysts , 1997 .

[47]  J. Carberry,et al.  Effect of Surface Area on the Oxidation of Methane over SolidOxide Solution Catalyst La0.8Sr0.2MnO3 , 1996 .

[48]  D. D. Agarwal,et al.  Toluene oxidation on LaCoO3, LaFeO3 and LaCrO3 perovskite catalysts. A comparative study , 1994 .

[49]  N. Yamazoe,et al.  Oxidation catalysis of perovskites --- relationships to bulk structure and composition (valency, defect, etc.) , 1990 .

[50]  G. Polzonetti,et al.  XPS study of MnO oxidation , 1989 .

[51]  K. Eguchi,et al.  Catalytic combustion of methane over various perovskite-type oxides , 1986 .

[52]  J. Tascón,et al.  Physicochemical properties of LaMnO3: Reducibility and kinetics of O2 adsorption , 1984 .

[53]  D. W. Johnson,et al.  Perovskite Oxides: Materials Science in Catalysis , 1977, Science.

[54]  P. K. Gallagher,et al.  Oxygen stoichiometry in lamn1-xcuxo3+y by thermogravimetry , 1977 .