1 Detecting 2 , 4 , 6-Trinitotoluene utilizing , anaerobic bacteria by 15 N and 13 C incorporation 3

[1]  ChangJiang Yu,et al.  Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N-stable isotope probing. , 2009, Environmental science & technology.

[2]  Alison M. Cupples,et al.  DNA buoyant density shifts during 15N-DNA stable isotope probing. , 2007, Microbiological research.

[3]  B. Smets,et al.  TNT biotransformation: when chemistry confronts mineralization , 2007, Applied Microbiology and Biotechnology.

[4]  S. Hsu,et al.  Stable Isotope Probing with 15N Achieved by Disentangling the Effects of Genome G+C Content and Isotope Enrichment on DNA Density , 2007, Applied and Environmental Microbiology.

[5]  T. Hofstetter,et al.  Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS. , 2007, Analytical chemistry.

[6]  J. Ramos,et al.  Bioremediation of 2,4,6-trinitrotoluene under field conditions. , 2007, Environmental science & technology.

[7]  N. Adrian,et al.  Anaerobic biotransformation of explosives in aquifer slurries amended with ethanol and propylene glycol. , 2007, Chemosphere.

[8]  L. Young,et al.  13C-Carrier DNA Shortens the Incubation Time Needed To Detect Benzoate-Utilizing Denitrifying Bacteria by Stable-Isotope Probing , 2005, Applied and Environmental Microbiology.

[9]  R. Geyer,et al.  Fate and metabolism of [15N]2,4,6‐trinitrotoluene in soil , 2004, Environmental toxicology and chemistry.

[10]  L. Young,et al.  Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments , 1999, Biodegradation.

[11]  C. Vetriani,et al.  Fingerprinting Microbial Assemblages from the Oxic/Anoxic Chemocline of the Black Sea , 2003, Applied and Environmental Microbiology.

[12]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[13]  J. Ramos,et al.  Biological Degradation of 2,4,6-Trinitrotoluene , 2001, Microbiology and Molecular Biology Reviews.

[14]  L. Young,et al.  Molecular characterization of sulfate-reducing bacteria in anaerobic hydrocarbon-degrading consortia and pure cultures using the dissimilatory sulfite reductase (dsrAB) genes. , 2001, FEMS microbiology ecology.

[15]  M. Cottrell,et al.  Community Composition of Marine Bacterioplankton Determined by 16S rRNA Gene Clone Libraries and Fluorescence In Situ Hybridization , 2000, Applied and Environmental Microbiology.

[16]  J. Hawari,et al.  Microbial degradation of explosives: biotransformation versus mineralization , 2000, Applied Microbiology and Biotechnology.

[17]  J. Ramos,et al.  Respiration of 2,4,6-trinitrotoluene By , 1999 .

[18]  Philip Ineson,et al.  Stable-isotope probing as a tool in microbial ecology , 2000, Nature.

[19]  L. Young,et al.  Molecular characterization of a sulfate-reducing consortium which mineralizes benzene , 1998 .

[20]  L. Kerkhof,et al.  Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. , 1998, FEMS microbiology letters.

[21]  A. J. Stewart,et al.  Chemical and toxicological testing of composted explosives‐contaminated soil , 1993 .