Plasma-aided nanofabrication: where is the cutting edge?

Plasma-aided nanofabrication is a rapidly expanding area of research spanning disciplines ranging from physics and chemistry of plasmas and gas discharges to solid state physics, materials science, surface science, nanoscience and nanotechnology and related engineering subjects. The current status of the research field is discussed and examples of superior performance and competitive advantage of plasma processes and techniques are given. These examples are selected to represent a range of applications of two major types of plasmas suitable for nanoscale synthesis and processing, namely thermally non-equilibrium and thermal plasmas. Major concepts and terminology used in the field are introduced. The paper also pinpoints the major challenges facing plasma-aided nanofabrication and identifies some emerging topics for future research.

[1]  Igor Levchenko,et al.  Deterministic shape control in plasma-aided nanotip assembly , 2006 .

[2]  Sergey V. Vladimirov,et al.  Physics and applications of complex plasmas , 2005 .

[3]  Robert P. H. Chang,et al.  Self-assembly of well-aligned gallium-doped zinc oxide nanorods , 2003 .

[4]  H. Sugai,et al.  Charging and trapping of macroparticles in near-electrode regions of fluorocarbon plasmas with negative ions , 2001 .

[5]  Michael Keidar,et al.  Ion current distribution on a substrate during nanostructure formation , 2004 .

[6]  Peretz P. Friedmann,et al.  Characterization of carbon nanotubes produced by arc discharge: Effect of the background pressure , 2004 .

[7]  Peter H. McMurry,et al.  Thermal plasma synthesis of ultrafine iron particles , 1993 .

[8]  S. Xu,et al.  Optical emission characteristics and mode transitions in low-frequency inductively coupled plasmas , 2002 .

[9]  Anthony B. Murphy,et al.  Thermal plasmas in gas mixtures , 2001 .

[10]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[11]  Masaya Shigeta,et al.  Numerical Analysis for Preparation of Silicon-Based Intermetallic Nano-Particles in Induction Thermal Plasma Flow Systems( Advanced Fusion of Functional Fluids Engineering) , 2005 .

[12]  K. Ostrikov,et al.  Nanoparticle manipulation in the near-substrate areas of low-temperature, high-density rf plasmas , 2005 .

[13]  Uwe R. Kortshagen,et al.  A plasma process for the synthesis of cubic-shaped silicon nanocrystals for nanoelectronic devices , 2007 .

[14]  Cheong Hoong Diong,et al.  RF plasma sputtering deposition of hydroxyapatite bioceramics : synthesis, performance, and biocompatibility , 2005 .

[15]  C. Clerc,et al.  Structure and hydrogen content of polymorphous silicon thin films studied by spectroscopic ellipsometry and nuclear measurements , 2004 .

[16]  Tsung-Shine Ko,et al.  Low‐Temperature Growth of Germanium Quantum Dots on Silicon Oxide by Inductively Coupled Plasma Chemical Vapor Deposition , 2004 .

[17]  Doh-Yeon Kim,et al.  Charged clusters in thin film growth , 2004 .

[18]  M. Cullinan,et al.  Nanoparticle-Coated Silicon Nanowires , 2006 .

[19]  Anand Prakash,et al.  A Simple Numerical Algorithm and Software for Solution of Nucleation, Surface Growth, and Coagulation Problems , 2003 .

[20]  Christopher T. Kingston,et al.  Large-scale production of single-walled carbon nanotubes by induction thermal plasma , 2007 .

[21]  S. Xu,et al.  Hysteresis and mode transitions in a low-frequency inductively coupled plasma , 2000 .

[22]  Gehan A. J. Amaratunga,et al.  The Significance of Plasma Heating in Carbon Nanotube and Nanofiber Growth , 2004 .

[23]  Shuyan Xu,et al.  Self-assembly of uniform carbon nanotip structures in chemically active inductively coupled plasmas , 2004 .

[24]  Pierre Fauchais,et al.  Understanding plasma spraying , 2004 .

[25]  N. A. Azarenkov,et al.  Surface waves at the interface of a dusty plasma and a metallic wall , 1998 .

[26]  Kostya Ostrikov,et al.  Integrated plasma-aided nanofabrication facility: Operation, parameters, and assembly of quantum structures and functional nanomaterials , 2006 .

[27]  N. A. Azarenkov,et al.  A model of a large-area planar plasma producer based on surface wave propagation in a plasma-metal structure with a dielectric sheath , 1995 .

[28]  Michael Arthur Cullinan,et al.  Effect of process parameters on the structure of Si–Ti–N nanostructured coatings deposited by hypersonic plasma particle deposition , 2005 .

[29]  Igor Levchenko,et al.  Nanostructures of various dimensionalities from plasma and neutral fluxes , 2007 .

[30]  K. S. Siow,et al.  Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization ‐ A Review , 2006 .

[31]  Jinliang Li,et al.  Control of particle size and phase formation of TiO2 nanoparticles synthesized in RF induction plasma , 2007 .

[32]  Alain Gleizes,et al.  The influence of iron vapour on an argon transferred arc , 1997 .

[33]  P. Roca i Cabarrocas,et al.  Shedding light on the growth of amorphous, polymorphous, protocrystalline and microcrystalline silicon thin films , 2001 .

[34]  Pascal Colpo,et al.  Design of a magnetic-pole enhanced inductively coupled plasma source , 2001 .

[35]  Michael Keidar,et al.  Current-driven ignition of single-wall carbon nanotubes , 2006 .

[36]  Jean-Christophe Charlier,et al.  Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process , 2004 .

[37]  Anthony B. Murphy,et al.  A comparison of treatments of diffusion in thermal plasmas , 1996 .

[38]  Shuyan Xu,et al.  Low-temperature assembly of ordered carbon nanotip arrays in low-frequency, high-density inductively coupled plasmas , 2005 .

[39]  Janos H. Fendler,et al.  Nanoparticles and Nanostructured Films , 1998 .

[40]  Thierry Chartier,et al.  Suspension and solution plasma spraying of finely structured layers: potential application to SOFCs , 2007 .

[41]  S. Xu,et al.  In situ catalyzation of carbon nanostructures growth in low-frequency inductively coupled plasmas , 2005, IEEE Transactions on Plasma Science.

[42]  Andrea R. Gerson,et al.  The effect of RF power on the deposition behavior of anatase clusters , 2003 .

[43]  Kostya Ostrikov,et al.  Low-temperature PECVD of nanodevice-Grade nc-3C-SiC , 2007 .

[44]  Igor Levchenko,et al.  Surface fluxes of Si and C adatoms at initial growth stages of SiC quantum dots , 2007 .

[45]  Yu,et al.  Surface waves in strongly irradiated dusty plasmas , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  Jiann Shieh,et al.  Plasma nanofabrications and antireflection applications , 2007 .

[47]  I. R. Jones,et al.  Low-frequency, high-density, inductively coupled plasma sources: Operation and applications , 2001 .

[48]  Eray S. Aydil,et al.  Mechanism of hydrogen-induced crystallization of amorphous silicon , 2002, Nature.

[49]  M. S. El-shall,et al.  Kinetics of ion-induced nucleation in a vapor-gas mixture. , 2005, The Journal of chemical physics.

[50]  Shuyan Xu,et al.  Nanocrystalline vanadium oxide films synthesized by plasma-assisted reactive rf sputtering deposition , 2007 .

[51]  Michael Keidar,et al.  Deterministic nanoassembly: Neutral or plasma route? , 2006 .

[52]  Michael Keidar,et al.  Microscopic ion fluxes in plasma-aided nanofabrication of ordered carbon nanotip structures , 2005 .

[53]  John Robertson,et al.  Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition , 2003 .

[54]  Shuyan Xu,et al.  Low-temperature plasma-assisted growth of optically transparent, highly oriented nanocrystalline AlN , 2007 .

[55]  John Robertson,et al.  Growth of nanotubes for electronics , 2007 .

[56]  William I. Milne,et al.  Factors determining properties of multi-walled carbon nanotubes/fibres deposited by PECVD , 2007 .

[57]  Joachim V. R. Heberlein,et al.  Focused nanoparticle-beam deposition of patterned microstructures , 2000 .

[58]  A. Ricard,et al.  An Iron Catalytic Probe for Determination of the O-atom Density in an Ar/O2 Afterglow , 2006 .

[59]  Takamasa Ishigaki,et al.  Controlled One-Step Synthesis of Nanocrystalline Anatase and Rutile TiO2 Powders by In-Flight Thermal Plasma Oxidation , 2004 .

[60]  P. Chu,et al.  Bioactivity and cytocompatibility of zirconia (ZrO(2)) films fabricated by cathodic arc deposition. , 2006, Biomaterials.

[61]  Anthony B. Murphy,et al.  Formation of titanium nanoparticles from a titanium tetrachloride plasma , 2004 .

[62]  Giacomo Ceccone,et al.  Plasma assisted production of chemical nano-patterns by nano-sphere lithography: application to bio-interfaces , 2007 .

[63]  Peter H. McMurry,et al.  NANOSTRUCTURED MATERIALS PRODUCTION BY HYPERSONIC PLASMA PARTICLE DEPOSITION , 1997 .

[64]  Shunri Oda,et al.  NeoSilicon materials and silicon nanodevices , 2003 .

[65]  Fabrice Gourbilleau,et al.  Low temperature deposition of nanocrystalline silicon carbide thin films , 2000 .

[66]  Gilles Patriarche,et al.  Synthesis of silicon nanocrystals in silane plasmas for nanoelectronics and large area electronic devices , 2007 .

[67]  Kostya Ostrikov,et al.  Colloquium: Reactive plasmas as a versatile nanofabrication tool , 2005 .

[68]  A. Ricard,et al.  Characterization of oxygen plasma with a fiber optic catalytic probe and determination of recombination coefficients , 2004, IEEE Transactions on Plasma Science.

[69]  N. A. Azarenkov,et al.  Nonlinear effects of ionization on surface waves on a plasma-metal interface , 1998 .

[70]  Igor Levchenko,et al.  Uniformity of postprocessing of dense nanotube arrays by neutral and ion fluxes , 2006 .

[71]  H. Dai,et al.  Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method , 2004 .

[72]  Michael Grätzel,et al.  New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films , 2006 .

[73]  T. Renault,et al.  System for In Situ Characterization of Nanoparticles Synthesized in a Thermal Plasma Process , 2005 .

[74]  Kostya Ostrikov,et al.  Synthesis of functional nanoassemblies in reactive plasmas , 2006 .

[75]  Igor Levchenko,et al.  Simulation of island behavior in discontinuous film growth , 2003 .

[76]  Peter Schwerdtfeger,et al.  Numerical modeling of titanium carbide synthesis in thermal plasma reactors , 1994 .

[77]  John Robertson,et al.  Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition , 2001 .

[78]  Kostya Ostrikov Plasma nanoscience: from nature's mastery to deterministic plasma-aided nanofabrication , 2006 .

[79]  Takamasa Ishigaki,et al.  Controlling the synthesis of TaC nanopowders by injecting liquid precursor into RF induction plasma , 2005 .

[80]  Katsuyuki Okada,et al.  Fractal growth mechanism of sp3-bonded 5H-BN microcones by plasma-assisted pulsed-laser chemical vapor deposition. , 2006, The Journal of chemical physics.

[81]  Alain Gleizes,et al.  A Mathematical Model of the Carbon Arc Reactor for Fullerene Synthesis , 1998 .

[82]  Michael Keidar,et al.  Factors affecting synthesis of single wall carbon nanotubes in arc discharge , 2007 .

[83]  Andrea R. Gerson,et al.  The mechanism of TiO2 deposition by direct current magnetron reactive sputtering , 2004 .

[84]  Masaya Shigeta,et al.  Growth mechanism of silicon-based functional nanoparticles fabricated by inductively coupled thermal plasmas , 2007 .

[85]  Chris Chapman,et al.  THE PRODUCTION OF ALUMINIUM NANOPOWDER USING DC ATMOSPHERIC PLASMA TECHNOLOGY , 2003 .

[86]  Michael Keidar,et al.  On the conditions of carbon nanotube growth in the arc discharge , 2004 .

[87]  M. Yu,et al.  Ion-acoustic surface waves on a dielectric-dusty plasma interface , 1998 .

[88]  Pere Roca i Cabarrocas,et al.  Polymorphous silicon thin films produced in dusty plasmas: application to solar cells , 2004 .

[89]  Masaya Shigeta,et al.  Numerical analysis for co-condensation processes in silicide nanoparticle synthesis using induction thermal plasmas at atmospheric pressure conditions , 2005 .

[90]  Soon Fatt Yoon,et al.  Hydrogenated amorphous silicon carbide deposition using electron cyclotron resonance chemical vapor deposition under high microwave power and strong hydrogen dilution , 2002 .

[91]  Hideo Sugai,et al.  Standing surface waves in a dust-contaminated large-area planar plasma source , 1999 .

[92]  Shuyan Xu,et al.  Nanopowder management and control of plasma parameters in electronegative SiH4 plasmas , 2003 .

[93]  Kostya Ostrikov,et al.  Dynamic self-organization phenomena in complex ionized gas systems : new paradigms and technological aspects , 2004 .

[94]  Steven L Girshick,et al.  Numerical study of MgO powder synthesis by thermal plasma , 1990 .

[95]  Wei Zhou,et al.  Low temperature deposition of nanocrystalline TiO2 films: enhancement of nanocrystal formation by energetic particle bombardment , 2007 .

[96]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[97]  Takamichi Hirata,et al.  Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition , 2003 .

[98]  Kazunori Koga,et al.  Transport of nano-particles in capacitively coupled rf discharges without and with amplitude modulation of discharge voltage , 2007 .

[99]  Jean-Pascal Borra,et al.  Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration , 2006 .

[100]  Feng Liao,et al.  Superhard nanocrystalline silicon carbide films , 2005 .

[101]  Takamichi Hirata,et al.  Structure control of carbon nanotubes using radio-frequency plasma enhanced chemical vapor deposition , 2004 .

[102]  Tiao-Yuan Huang,et al.  Low-Temperature Growth of Polycrystalline Ge Films on SiO2 Substrate by HDPCVD , 2005 .

[103]  C. Poole,et al.  Introduction to Nanotechnology , 2003 .

[104]  N. A. Azarenkov,et al.  Inductively coupled Ar/CH₄/H₂plasmas for low-temperature deposition of ordered carbon nanostructures , 2004 .

[105]  Shuyan Xu,et al.  PECVD of Carbon Nanostructures in Hydrocarbon‐Based RF Plasmas , 2005 .

[106]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[107]  Uwe R. Kortshagen,et al.  Single nanoparticle semiconductor devices , 2006 .

[108]  S. Xu,et al.  Power transfer and mode transitions in low-frequency inductively coupled plasmas , 2000 .

[109]  Alan M. Cassell,et al.  Carbon nanotube growth by PECVD: a review , 2003 .

[110]  K. Ostrikov,et al.  Thermophoretic control of building units in the plasma-assisted deposition of nanostructured carbon films , 2004 .

[111]  José Gonzalez-Aguilar,et al.  Carbon nanostructures production by gas-phase plasma processes at atmospheric pressure , 2007 .

[112]  M. Meyyappan,et al.  An investigation of plasma chemistry for dc plasma enhanced chemical vapour deposition of carbon nanotubes and nanofibres , 2005 .

[113]  S. Xu,et al.  Growth of SiC nanoparticle films by means of RF magnetron sputtering , 2005, IEEE Transactions on Plasma Science.

[114]  Shuyan Xu,et al.  Plasma-Aided Nanofabrication: From Plasma Sources to Nanoassembly , 2007 .

[115]  Miran Mozetič,et al.  Behaviour of oxygen atoms near the surface of nanostructured Nb2O5 , 2007 .

[116]  Michael L. Simpson,et al.  Vertically Aligned Carbon Nanofibers and Related Structures: Controlled Synthesis and Directed Assembly , 2005 .

[117]  Kostya Ostrikov,et al.  Two-dimensional simulation of nanoassembly precursor species in Ar+H2+C2H2 reactive plasmas , 2007 .

[118]  Wei Zhou,et al.  Plasma-controlled nanocrystallinity and phase composition of TiO2: a smart way to enhance biomimetic response. , 2007, Journal of biomedical materials research. Part A.

[119]  Peter H. McMurry,et al.  Time-dependent aerosol models and homogeneous nucleation rates , 1990 .

[120]  Shojiro Komatsu,et al.  New type of BN nanoparticles and films prepared by synergetic deposition processes using laser and plasma: the nanostructures, properties and growth mechanisms , 2007 .

[121]  Michael A. Guillorn,et al.  Time-resolved diagnostics of single wall carbon nanotube synthesis by laser vaporization , 2002 .

[122]  J. D. Long,et al.  Plasma-reactive SiC quantum dots on polycrystalline AlN films , 2006 .

[123]  Steven L Girshick,et al.  Thermal plasma synthesis of nanostructured silicon carbide films , 2007 .

[124]  Partha S. Dutta,et al.  Low temperature deposition of nanocrystalline silicon carbide films by plasma enhanced chemical vapor deposition and their structural and optical characterization , 2003 .

[125]  Michael Keidar,et al.  Ion-assisted functional monolayer coating of nanorod arrays in hydrogen plasmas , 2007 .

[126]  I. E. Grey,et al.  Efficiency of solar water splitting using semiconductor electrodes , 2006 .

[127]  Paul K. Chu,et al.  Structure and properties of zirconia (ZrO2) films fabricated by plasma-assisted cathodic arc deposition , 2007 .

[128]  André Anders,et al.  Metal plasmas for the fabrication of nanostructures , 2007 .

[129]  Veinardi Suendo,et al.  Soft landing of silicon nanocrystals in plasma enhanced chemical vapor deposition , 2006 .

[130]  Shuyan Xu,et al.  Structure, bonding state and in-vitro study of Ca–P–Ti film deposited on Ti6Al4V by RF magnetron sputtering , 2002 .

[131]  Sungho Jin,et al.  Control of carbon capping for regrowth of aligned carbon nanotubes. , 2005, The journal of physical chemistry. B.

[132]  Sungho Jin,et al.  Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition , 2000 .

[133]  P. Mcmurry,et al.  Modelling particle formation and growth in a plasma synthesis reactor , 1988 .

[134]  Martin Désilets,et al.  Modelling of the reactive synthesis of ultra-fine powders in a thermal plasma reactor , 1997 .

[135]  Zhong Chen,et al.  Chemically active plasmas for deterministic assembly of nanocrystalline SiC film , 2007 .

[136]  Lawrence E. Cram,et al.  Statistical evaluation of radiative power losses from thermal plasmas due to spectral lines , 1985 .

[137]  Osamu Ishihara,et al.  On the realization of the current-driven dust ion-acoustic instability , 1999 .

[138]  U. Kogelschatz Atmospheric-pressure plasma technology , 2004 .

[139]  Gehan A. J. Amaratunga,et al.  Plasma composition during plasma-enhanced chemical vapor deposition of carbon nanotubes , 2004 .