Semi-implicit Taylor schemes for stiff rough differential equations

We study a class of semi-implicit Taylor-type numerical methods that are easy to implement and designed to solve multidimensional stochastic differential equations driven by a general rough noise, e.g. a fractional Brownian motion. In the multiplicative noise case, the equation is understood as a rough differential equation in the sense of T.~Lyons. We focus on equations for which the drift coefficient may be unbounded and satisfies a one-sided Lipschitz condition only. We prove well-posedness of the methods, provide a full analysis, and deduce their convergence rate. Numerical experiments show that our schemes are particularly useful in the case of stiff rough stochastic differential equations driven by a fractional Brownian motion.

[1]  M. Hutzenthaler,et al.  Local Lipschitz continuity in the initial value and strong completeness for nonlinear stochastic differential equations , 2013, 1309.5595.

[2]  E. Weinan,et al.  Effectiveness of implicit methods for stiff stochastic differential equations , 2008 .

[3]  L. C. Young,et al.  An inequality of the Hölder type, connected with Stieltjes integration , 1936 .

[4]  Dean S. Clark,et al.  Short proof of a discrete gronwall inequality , 1987, Discret. Appl. Math..

[5]  Rough differential equations with unbounded drift term , 2016, 1605.05604.

[6]  A. Bountis Dynamical Systems And Numerical Analysis , 1997, IEEE Computational Science and Engineering.

[7]  Terry Lyons Di erential equations driven by rough signals , 1998 .

[8]  Peter E. Kloeden,et al.  The Numerical Solution of Nonlinear Stochastic Dynamical Systems: a Brief Introduction , 1991 .

[9]  Sebastian Riedel,et al.  From Rough Path Estimates to Multilevel Monte Carlo , 2013, SIAM J. Numer. Anal..

[10]  Desmond J. Higham,et al.  Mean-Square and Asymptotic Stability of the Stochastic Theta Method , 2000, SIAM J. Numer. Anal..

[11]  Stig Larsson,et al.  On a Randomized Backward Euler Method for Nonlinear Evolution Equations with Time-Irregular Coefficients , 2017, Foundations of Computational Mathematics.

[12]  P. Hartman Ordinary Differential Equations , 1965 .

[13]  M. Rosenbaum,et al.  The characteristic function of rough Heston models , 2016, 1609.02108.

[14]  Global Solutions to Rough Differential Equations with Unbounded Vector Fields , 2012 .

[15]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[16]  Nicolas Victoir,et al.  Differential equations driven by Gaussian signals , 2007, 0707.0313.

[17]  A. M. Davie,et al.  Differential Equations Driven by Rough Paths: An Approach via Discrete Approximation , 2007, 0710.0772.

[18]  S. Riedel,et al.  The Jain–Monrad criterion for rough paths and applications to random Fourier series and non-Markovian Hörmander theory , 2013, 1307.3460.

[19]  On rough differential equations , 2009 .

[20]  Andreas Neuenkirch,et al.  A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion , 2010, 1001.3344.

[21]  Portfolio optimisation beyond semimartingales: shadow prices and fractional Brownian motion , 2015, 1505.02416.

[22]  Jim Gatheral,et al.  Pricing under rough volatility , 2015 .

[23]  P. Guasoni NO ARBITRAGE UNDER TRANSACTION COSTS, WITH FRACTIONAL BROWNIAN MOTION AND BEYOND , 2006 .

[24]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[25]  R. Seydel Numerical Integration of Stochastic Differential Equations , 2004 .

[26]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[27]  T. H. Gronwall Note on the Derivatives with Respect to a Parameter of the Solutions of a System of Differential Equations , 1919 .

[28]  Peter K. Friz,et al.  Multidimensional Stochastic Processes as Rough Paths: Free nilpotent groups , 2010 .

[29]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[30]  Martin Hairer,et al.  A Course on Rough Paths: With an Introduction to Regularity Structures , 2014 .

[31]  G. Choe Numerical Solution of Stochastic Differential Equations , 2016 .

[32]  École d'été de probabilités de Saint-Flour,et al.  Differential equations driven by rough paths , 2007 .

[33]  Yue Wu,et al.  Error Analysis of Randomized Runge–Kutta Methods for Differential Equations with Time-Irregular Coefficients , 2017, Comput. Methods Appl. Math..

[34]  E. Hairer,et al.  Stiff and differential-algebraic problems , 1991 .

[35]  Etienne Emmrich,et al.  Gewöhnliche und Operator-Differentialgleichungen , 2004 .

[36]  Mikkel Bennedsen,et al.  A Rough Multi-Factor Model of Electricity Spot Prices , 2016 .

[37]  Jialin Hong,et al.  Symplectic Runge–Kutta methods for Hamiltonian systems driven by Gaussian rough paths , 2017, Applied Numerical Mathematics.

[38]  Sebastian Riedel,et al.  Convergence rates for the full Gaussian rough paths , 2011 .

[39]  Sebastian Riedel,et al.  Runge-Kutta methods for rough differential equations , 2020, Journal of Stochastic Analysis.

[40]  M. Rosenbaum,et al.  Volatility is rough , 2014, 1410.3394.

[41]  M. Gubinelli Ramification of rough paths , 2006 .

[42]  E. Helfand Numerical integration of stochastic differential equations , 1979, The Bell System Technical Journal.