An efficient numerical model for liquid water uptake in porous material and its parameter estimation

Abstract The goal of this study is to propose an efficient numerical model for the predictions of capillary adsorption phenomena in a porous material. The Scharfetter–Gummel numerical scheme is proposed to solve an advection–diffusion equation with gravity flux. Its advantages such as accuracy, relaxed stability condition, and reduced computational cost are discussed along with the study of linear and nonlinear cases. The reliability of the numerical model is evaluated by comparing the numerical predictions with experimental observations of liquid uptake in bricks. A parameter estimation problem is solved to adjust the uncertain coefficients of moisture diffusivity and hydraulic conductivity.

[1]  Debora Slanzi,et al.  Rising damp in historical buildings: A Venetian perspective , 2018 .

[2]  Eric Walter,et al.  Qualitative and quantitative experiment design for phenomenological models - A survey , 1990, Autom..

[3]  John Grunewald,et al.  Coupled heat air and moisture transfer in building structures , 1997 .

[4]  E. Walter,et al.  Global approaches to identifiability testing for linear and nonlinear state space models , 1982 .

[5]  Peter Wagner,et al.  Analytical model for the moisture absorption in capillary active building materials , 2017 .

[6]  Eric Rirsch,et al.  Rising damp in masonry walls and the importance of mortar properties , 2010 .

[7]  Vasco Peixoto de Freitas,et al.  Treatment of rising damp in historical buildings: wall base ventilation , 2007 .

[8]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[9]  Dominique Derome,et al.  Water uptake in clay brick at different temperatures: Experiments and numerical simulations , 2016 .

[10]  Malgorzata Peszynska,et al.  Numerical methods for unsaturated flow with dynamic capillary pressure in heterogeneous porous media , 2008 .

[11]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[12]  P. Lopez-Arcea,et al.  Deterioration of dolostone by magnesium sulphate salt : an example of incompatible building materials at Bonaval Monastery , Spain , 2008 .

[13]  Adérito Araújo,et al.  Cross-Diffusion Systems for Image Processing: II. The Nonlinear Case , 2016, Journal of Mathematical Imaging and Vision.

[14]  D. Ucinski Optimal measurement methods for distributed parameter system identification , 2004 .

[15]  Howard A. Levine,et al.  Analysis of a convection reaction-diffusion equation , 1988 .

[16]  Jerzy Hoła,et al.  Analysis of the Moisture Content of Masonry Walls in Historical Buildings Using the Basement of a Medieval Town Hall as an Example , 2017 .

[17]  Gustaf Söderlind,et al.  Evaluating numerical ODE/DAE methods, algorithms and software , 2006 .

[18]  Wolfgang Marquardt,et al.  Optimal experimental design for identification of transport coefficient models in convection-diffusion equations , 2015, Comput. Chem. Eng..

[19]  Catherine Buhé,et al.  Factors governing the development of moisture disorders for integration into building performance simulation , 2015 .

[20]  G. Scherer Stress from crystallization of salt , 2004 .

[21]  Nathan Mendes,et al.  Accurate numerical simulation of moisture front in porous material , 2016, 1612.07649.

[22]  J. R. Philip,et al.  Moisture movement in porous materials under temperature gradients , 1957 .

[23]  George W. Scherer,et al.  Crystallization in pores , 1999 .

[24]  Nathan Mendes,et al.  On the Solution of Coupled Heat and Moisture Transport in Porous Material , 2018, Transport in Porous Media.

[25]  Stefan Finsterle,et al.  Practical notes on local data‐worth analysis , 2015 .

[26]  Gustaf Söderlind,et al.  Adaptive Time-Stepping and Computational Stability , 2006 .

[27]  Jr. Eugene C. Gartland,et al.  On the uniform convergence of Scharfetter-Gummel discretization in one dimension , 1993 .

[28]  Brian Straughan,et al.  Analysis of a convective reaction-diffusion equation II , 1989 .

[29]  François Ollivier,et al.  Algorithmes efficaces pour tester l'identifiabilité locale , 2002 .

[30]  Della M. Roy,et al.  Water Transport in Brick, Stone and Concrete , 2004 .

[31]  Laurent Gosse,et al.  Viscous Equations Treated with \(\mathcal{L}\)-Splines and Steklov-Poincaré Operator in Two Dimensions , 2017 .

[32]  João M.P.Q. Delgado,et al.  Mathematical analysis of the evaporative process of a new technological treatment of rising damp in historic buildings , 2010 .

[33]  Elisa Franzoni,et al.  Rising damp removal from historical masonries: A still open challenge , 2014 .

[34]  Isabel Torres,et al.  The influence of the thickness of the walls and their properties on the treatment of rising damp in historic buildings , 2010 .