Lie algebra approach for tracking and 3D motion estimation using monocular vision

The main purpose of this paper is to estimate 2D and 3D transformation parameters. All the group transformations are represented in terms of their Lie algebra elements. The Lie algebra approach assures to follow the shortest path or geodesic in the involved Lie group. For the estimation of the Lie algebra parameters, we take advantage of the theory of system identification. Two experiments are presented to show the potential of the method. First, we carry out the estimation of the affine or projective parameters related to the transformation involved in monocular region tracking. Second, we develop a monocular method to estimate 3D motion of an object in the visual space. In the latter, the six parameters of the rigid motion are estimated based on measurements of the six parameters of the affine transformation in the image.

[1]  Selim Benhimane,et al.  Real-time image-based tracking of planes using efficient second-order minimization , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[2]  Roberto Cipolla,et al.  Application of Lie Algebras to Visual Servoing , 2000, International Journal of Computer Vision.

[3]  T. Frankel The geometry of physics : an introduction , 2004 .

[4]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[5]  Emanuele Trucco,et al.  Making good features track better , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[6]  Helge J. Ritter,et al.  Three-dimensional neural net for learning visuomotor coordination of a robot arm , 1990, IEEE Trans. Neural Networks.

[7]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Michel Dhome,et al.  Hyperplane Approximation for Template Matching , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Steve Mann,et al.  Video orbits of the projective group a simple approach to featureless estimation of parameters , 1997, IEEE Trans. Image Process..

[10]  Kostas Daniilidis,et al.  Fixation Simplifies 3D Motion Estimation , 1997, Comput. Vis. Image Underst..

[11]  Benedetto Allotta,et al.  Image-based robot task planning and control using a compact visual representation , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[12]  Richard Szeliski,et al.  Construction of Panoramic Image Mosaics with Global and Local Alignment , 2001 .

[13]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[14]  Alex Pentland,et al.  Recursive Estimation of Motion, Structure, and Focal Length , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  José Miguel Buenaposada,et al.  Real-time tracking and estimation of plane pose , 2002, Object recognition supported by user interaction for service robots.

[16]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Frank Chongwoo Park,et al.  A Lie Group Formulation of Robot Dynamics , 1995, Int. J. Robotics Res..

[18]  Marco La Cascia,et al.  Fast, Reliable Head Tracking under Varying Illumination: An Approach Based on Registration of Texture-Mapped 3D Models , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Stefano Soatto,et al.  Structure from Motion Causally Integrated Over Time , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  R. Chellappa,et al.  Recursive 3-D motion estimation from a monocular image sequence , 1990 .

[21]  R. Carter Lie Groups , 1970, Nature.

[22]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[23]  B. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .