Nanomechanics and Raman spectroscopy of fibrillin 2 knock-out mouse bones

[1]  Kevin B. Jones,et al.  Symposium on the musculoskeletal aspects of marfan syndrome: Meeting report and state of the science , 2007, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[2]  William F. Finney,et al.  Bone tissue compositional differences in women with and without osteoporotic fracture. , 2006, Bone.

[3]  O. Akkus,et al.  The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. , 2006, Bone.

[4]  Richard Mendelsohn,et al.  Infrared analysis of bone in health and disease. , 2005, Journal of biomedical optics.

[5]  Matthew J. Silva,et al.  Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6. , 2004, Journal of biomechanics.

[6]  J. Rho,et al.  Bone Intrinsic Material Properties in Three Inbred Mouse Strains , 2004, Calcified Tissue International.

[7]  Fran Adar,et al.  Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. , 2004, Bone.

[8]  P. Ammann Les facteurs déterminants de la résistance mécanique osseuse , 2003 .

[9]  J. Rho,et al.  Congenital Lack of COX-2 Affects Mechanical and Geometric Properties of Bone in Mice , 2003, Calcified Tissue International.

[10]  P. Giampietro,et al.  Assessment of bone mineral density in adults and children with Marfan syndrome , 2003, Osteoporosis International.

[11]  O. Akkus,et al.  Aging of Microstructural Compartments in Human Compact Bone , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[12]  D. Arking,et al.  Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome , 2003, Nature Genetics.

[13]  F. Quondamatteo,et al.  Fibrillin-1 and fibrillin-2 in human embryonic and early fetal development. , 2002, Matrix biology : journal of the International Society for Matrix Biology.

[14]  L. Sakai,et al.  Regulation of limb patterning by extracellular microfibrils , 2001, The Journal of cell biology.

[15]  J. J. Freeman,et al.  Raman Spectroscopic Detection of Changes in Bioapatite in Mouse Femora as a Function of Age and In Vitro Fluoride Treatment , 2001, Calcified Tissue International.

[16]  M. Morris,et al.  Application of vibrational spectroscopy to the study of mineralized tissues (review). , 2000, Journal of biomedical optics.

[17]  A. Evdokiou,et al.  Expression of fibrillins and other microfibril-associated proteins in human bone and osteoblast-like cells. , 2000, Bone.

[18]  C. Boileau,et al.  [Fibrillin network in normal bone tissue]. , 2000, Annales de pathologie.

[19]  Paul Wordsworth,et al.  Bone mineral density in adults with Marfan syndrome. , 2000, Rheumatology.

[20]  L. Bonewald,et al.  Role of the Latent Transforming Growth Factor β–Binding Protein 1 in Fibrillin‐Containing Microfibrils in Bone Cells In Vitro and In Vivo , 2000, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[21]  F. Ramirez,et al.  The fibrillins. , 1999, The international journal of biochemistry & cell biology.

[22]  G. Pharr,et al.  Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone. , 1999, Journal of biomedical materials research.

[23]  C. Rey,et al.  MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites , 1998, Calcified Tissue International.

[24]  P. Mäenpää,et al.  Transglutaminase-catalyzed Cross-linking of Osteopontin Is Inhibited by Osteocalcin* , 1997, The Journal of Biological Chemistry.

[25]  J. Rosenbloom,et al.  Cell-type Specific Recognition of RGD- and Non-RGD-containing Cell Binding Domains in Fibrillin-1 (*) , 1996, The Journal of Biological Chemistry.

[26]  D. Milewicz,et al.  Fibrillin–2 (FBN2) mutations result in the Marfan–like disorder, congenital contractural arachnodactyly , 1995, Nature Genetics.

[27]  R. Marcus,et al.  The bone mineral status of patients with marfan syndrome , 1995, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[28]  W. Hu,et al.  Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils , 1995, The Journal of cell biology.

[29]  H. Roach,et al.  WHY DOES BONE MATRIX CONTAIN NON‐COLLAGENOUS PROTEINS? THE POSSIBLE ROLES OF OSTEOCALCIN, OSTEONECTIN, OSTEOPONTIN AND BONE SIALOPROTEIN IN BONE MINERALISATION AND RESORPTION , 1994, Cell biology international.

[30]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[31]  R. Burgeson,et al.  Human bone contains type III collagen, type VI collagen, and fibrillin: type III collagen is present on specific fibers that may mediate attachment of tendons, ligaments, and periosteum to calcified bone cortex. , 1991, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[32]  Michael D. Morris,et al.  Recent developments in Raman and infrared spectroscopy and imaging of bone tissue , 2004 .

[33]  L. Pereira,et al.  Molecules in focus: the fibrillins , 1999 .