Differences between two strains of Ceriporiopsis subvermispora on improving the nutritive value of wheat straw for ruminants

This study evaluated differences between two strains of Ceriporiopsis subvermispora on improving the nutritive value and in vitro degradability of wheat straw.

[1]  J. Baars,et al.  The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips , 2016, Journal of Animal Science and Biotechnology.

[2]  S. V. Kuijk,et al.  The effect of adding urea, manganese and linoleic acid to wheat straw and wood chips on lignin degradation by fungi and subsequent in vitro rumen degradation , 2016 .

[3]  S. V. Kuijk,et al.  Fungal treatment of lignocellulosic biomass: Importance of fungal species, colonization and time on chemical composition and in vitro rumen degradability , 2015 .

[4]  L. Pollegioni,et al.  Lignin‐degrading enzymes , 2015, The FEBS journal.

[5]  S. V. Kuijk,et al.  Fungal treated lignocellulosic biomass as ruminant feed ingredient: a review. , 2015, Biotechnology advances.

[6]  Bin Yao,et al.  Lignin Biodegradation with Laccase-Mediator Systems , 2014, Front. Energy Res..

[7]  J. Baars,et al.  Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. , 2013, Bioresource technology.

[8]  Takashi Watanabe,et al.  Alkadienyl and alkenyl itaconic acids (ceriporic acids G and H) from the selective white-rot fungus Ceriporiopsis subvermispora: a new class of metabolites initiating ligninolytic lipid peroxidation. , 2012, Organic & biomolecular chemistry.

[9]  C. Hamel,et al.  Fungal communities associated with durum wheat production system: A characterization by growth stage, plant organ and preceding crop , 2012 .

[10]  J. Baars,et al.  Fungal strain and incubation period affect chemical composition and nutrient availability of wheat straw for rumen fermentation. , 2012, Bioresource technology.

[11]  F. J. Ruiz-Dueñas,et al.  Lignin-degrading Peroxidases from Genome of Selective Ligninolytic Fungus Ceriporiopsis subvermispora* , 2012, The Journal of Biological Chemistry.

[12]  S. More,et al.  Isolation, Purification, and Characterization of Fungal Laccase from Pleurotus sp. , 2011, Enzyme research.

[13]  Mohammad J. Taherzadeh,et al.  Biological pretreatment of lignocelluloses with white-rot fungi and its applications: A review , 2011, BioResources.

[14]  K. Hammel,,et al.  Fungal Biodegradation of Lignocelluloses , 2011 .

[15]  Bhuvnesh Shrivastava,et al.  White-rot fungal conversion of wheat straw to energy rich cattle feed , 2011, Biodegradation.

[16]  A. Ferraz,et al.  Behavior of Ceriporiopsis subvermispora during Pinus taeda biotreatment in soybean-oil-amended cultures , 2010 .

[17]  D. S. Arora,et al.  Changes in biochemical constituents of paddy straw during degradation by white rot fungi and its impact on in vitro digestibility , 2010, Journal of applied microbiology.

[18]  Caixia Wan,et al.  Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility , 2010 .

[19]  W. Qin,et al.  Fungal biodegradation and enzymatic modification of lignin. , 2010, International journal of biochemistry and molecular biology.

[20]  Rui M. F. Bezerra,et al.  Modification of wheat straw lignin by solid state fermentation with white-rot fungi. , 2009, Bioresource technology.

[21]  J. Cone,et al.  Comparison of protein fermentation characteristics in rumen fluid determined with the gas production technique and the nylon bag technique , 2009 .

[22]  G. Zeeman,et al.  Pretreatments to enhance the digestibility of lignocellulosic biomass. , 2009, Bioresource technology.

[23]  Outi Niemenmaa,et al.  Ergosterol contents of some wood-rotting basidiomycete fungi grown in liquid and solid culture conditions , 2008 .

[24]  V. Arantes,et al.  The synergistic action of ligninolytic enzymes (MnP and Laccase) and Fe3+-reducing activity from white-rot fungi for degradation of Azure B , 2007 .

[25]  M. R. Simón,et al.  The endophytic fungi from wheat (Triticum aestivum L.) , 2007 .

[26]  L. Tranvik,et al.  Ergosterol as a measure of living fungal biomass: persistence in environmental samples after fungal death. , 2004, Journal of microbiological methods.

[27]  M. Siika‐aho,et al.  Extraction and determination of enzymes produced by Ceriporiopsis subvermispora during biopulping of Pinus taeda wood chips , 2004 .

[28]  A. Ferraz,et al.  Wood biodegradation and enzyme production by Ceriporiopsis subvermispora during solid-state fermentation of Eucalyptus grandis , 2003 .

[29]  D. S. Arora,et al.  Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw , 2002 .

[30]  Gary M. Scott,et al.  FungaI Treatment of Wood Chips for Chemical Pulping , 1999 .

[31]  G. Mata,et al.  Extracellular enzyme activities in six Lentinula edodes strains during cultivation in wheat straw , 1998 .

[32]  J. Cone,et al.  Influence of protein fermentation on gas production profiles , 1998, Proceedings of the British Society of Animal Science.

[33]  K. Jensen,et al.  Manganese-Dependent Cleavage of Nonphenolic Lignin Structures by Ceriporiopsis subvermispora in the Absence of Lignin Peroxidase , 1996, Applied and environmental microbiology.

[34]  K. Jensen,et al.  Manganese-Dependent Cleavage of Nonphenolic Lignin Structures by Ceriporiopsis subvermispora in the Absence of Lignin Peroxidase , 1997, Applied and environmental microbiology.

[35]  J. Groot,et al.  Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds , 1996 .

[36]  K. Karunanandaa,et al.  Colonization of crop residues by white-rot fungi : Cell wall monosaccharides, phenolic acids, ruminal fermentation characteristics and digestibility of cell wall fiber components in vitro , 1996 .

[37]  J. Cone,et al.  Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus , 1996 .

[38]  L. Vining,et al.  Physiological control of trophophase-idiophase separation in streptomycete cultures producing secondary metabolites. , 1995, Canadian journal of microbiology.

[39]  K. Jensen,et al.  Oxidative degradation of non‐phenolic lignin during lipid peroxidation by fungal manganese peroxidase , 1994, FEBS letters.

[40]  D. Cullen,et al.  Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. , 1994, Microbiology.

[41]  T. Chen,et al.  Ergosterol - a measure of fungal growth in wood for staining and pitch control fungi , 1993 .

[42]  F. Archibald,et al.  A new assay for lignin-type peroxidases employing the dye azure B , 1992, Applied and environmental microbiology.

[43]  P. V. Soest,et al.  Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. , 1991, Journal of dairy science.

[44]  R. Farrell,et al.  Enzymatic "combustion": the microbial degradation of lignin. , 1987, Annual review of microbiology.

[45]  L. Ryvarden,et al.  Some new combinations in the Polyporaceae , 1985 .

[46]  T. Klopfenstein,et al.  Chemical Treatment of Wheat Straw , 1980 .