A modified Frank-Wolfe algorithm for computing minimum-area enclosing ellipsoidal cylinders: Theory and algorithms

We study a first-order method to find the minimum cross-sectional area ellipsoidal cylinder containing a finite set of points. This problem arises in optimal design in statistics when one is interested in a subset of the parameters. We provide convex formulations of this problem and its dual, and analyze a method based on the Frank-Wolfe algorithm for their solution. Under suitable conditions on the behavior of the method, we establish global and local convergence properties. However, difficulties may arise when a certain submatrix loses rank, and we describe a technique for dealing with this situation.

[1]  Corwin L. Atwood,et al.  Optimal and Efficient Designs of Experiments , 1969 .

[2]  Boris Polyak,et al.  Constrained minimization methods , 1966 .

[3]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[4]  R. Rockafellar,et al.  Characterizations of Lipschitzian Stability in Nonlinear Programming , 2020 .

[5]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[6]  S. Silvey,et al.  A geometric approach to optimal design theory , 1973 .

[7]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[8]  Piyush Kumar,et al.  Minimum-Volume Enclosing Ellipsoids and Core Sets , 2005 .

[9]  Patrice Marcotte,et al.  Some comments on Wolfe's ‘away step’ , 1986, Math. Program..

[10]  Shuzhong Zhang,et al.  On Cones of Nonnegative Quadratic Functions , 2003, Math. Oper. Res..

[11]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[12]  Peng Sun,et al.  Computation of Minimum Volume Covering Ellipsoids , 2002, Oper. Res..

[13]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[14]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[15]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[16]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[17]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[18]  Peng Sun,et al.  Linear convergence of a modified Frank–Wolfe algorithm for computing minimum-volume enclosing ellipsoids , 2008, Optim. Methods Softw..

[19]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[20]  C. Atwood Sequences Converging to $D$-Optimal Designs of Experiments , 1973 .