A modified Frank-Wolfe algorithm for computing minimum-area enclosing ellipsoidal cylinders: Theory and algorithms
暂无分享,去创建一个
[1] Corwin L. Atwood,et al. Optimal and Efficient Designs of Experiments , 1969 .
[2] Boris Polyak,et al. Constrained minimization methods , 1966 .
[3] Philip Wolfe,et al. An algorithm for quadratic programming , 1956 .
[4] R. Rockafellar,et al. Characterizations of Lipschitzian Stability in Nonlinear Programming , 2020 .
[5] Nicholas I. M. Gould,et al. Trust Region Methods , 2000, MOS-SIAM Series on Optimization.
[6] S. Silvey,et al. A geometric approach to optimal design theory , 1973 .
[7] S. M. Robinson. Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .
[8] Piyush Kumar,et al. Minimum-Volume Enclosing Ellipsoids and Core Sets , 2005 .
[9] Patrice Marcotte,et al. Some comments on Wolfe's ‘away step’ , 1986, Math. Program..
[10] Shuzhong Zhang,et al. On Cones of Nonnegative Quadratic Functions , 2003, Math. Oper. Res..
[11] O. Nelles,et al. An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.
[12] Peng Sun,et al. Computation of Minimum Volume Covering Ellipsoids , 2002, Oper. Res..
[13] W. J. Studden,et al. Theory Of Optimal Experiments , 1972 .
[14] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[15] F. Pukelsheim. Optimal Design of Experiments , 1993 .
[16] Stephen M. Robinson,et al. Strongly Regular Generalized Equations , 1980, Math. Oper. Res..
[17] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[18] Peng Sun,et al. Linear convergence of a modified Frank–Wolfe algorithm for computing minimum-volume enclosing ellipsoids , 2008, Optim. Methods Softw..
[19] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[20] C. Atwood. Sequences Converging to $D$-Optimal Designs of Experiments , 1973 .