In Situ Observations of a Magnetosheath High‐Speed Jet Triggering Magnetopause Reconnection

Magnetosheath high‐speed jets—localized dynamic pressure enhancements typically of ∼1 Earth radius in size—impact the dayside magnetopause several times per hour. Here we present the first in situ measurements suggesting that such an impact triggered magnetopause reconnection. We use observations from the five Time History of Events and Macroscale Interactions during Substorms spacecraft in a string‐of‐pearls configuration on 7 August 2007. The spacecraft recorded magnetopause in‐and‐out motion during an impact of a magnetosheath jet (VN∼−300 km/s along the magnetopause normal direction). There was no evidence for reconnection for the preimpact crossing, yet three probes observed reconnection after the impact. We infer that the jet impact compressed the originally thick (60–70 di), high magnetic shear (140–160° magnetopause until it was thin enough for reconnection to occur. Magnetosheath high‐speed jets could therefore act as a driver for bursty dayside reconnection.

[1]  H.-Q. Hu,et al.  Observational properties of dayside throat aurora and implications on the possible generation mechanisms , 2017 .

[2]  M. Fujimoto,et al.  Ion Larmor radius effects near a reconnection X line at the magnetopause: THEMIS observations and simulation comparison , 2016 .

[3]  V. Angelopoulos,et al.  Geoeffective jets impacting the magnetopause are very common , 2016, Journal of geophysical research. Space physics.

[4]  H. Zhang,et al.  Impacts of spontaneous hot flow anomalies on the magnetosheath and magnetopause , 2016 .

[5]  B. Lembège,et al.  Formation of downstream high‐speed jets by a rippled nonstationary quasi‐parallel shock: 2‐D hybrid simulations , 2016 .

[6]  P. Cassak,et al.  Reconnection at Earth’s Dayside Magnetopause , 2016 .

[7]  S. Petrinec,et al.  Ion acceleration dependence on magnetic shear angle in dayside magnetopause reconnection , 2015 .

[8]  A. Dmitriev,et al.  Large‐scale jets in the magnetosheath and plasma penetration across the magnetopause: THEMIS observations , 2015, 1508.05229.

[9]  T. Karlsson,et al.  Waves in high-speed plasmoids in the magnetosheath and at the magnetopause , 2014 .

[10]  David G. Sibeck,et al.  The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas , 2014 .

[11]  F. Plaschke,et al.  On the generation of magnetosheath high-speed jets by bow shock ripples , 2013, Journal of geophysical research. Space physics.

[12]  V. Angelopoulos,et al.  Anti-sunward high-speed jets in the subsolar magnetosheath , 2013 .

[13]  Michael Hartinger,et al.  Magnetospheric “magic” frequencies as magnetopause surface eigenmodes , 2013 .

[14]  V. Angelopoulos,et al.  Electron bulk heating in magnetic reconnection at Earth's magnetopause: Dependence on the inflow Alfvén speed and magnetic shear , 2013 .

[15]  T. Horbury,et al.  Magnetospheric response to magnetosheath pressure pulses: A low‐pass filter effect , 2013 .

[16]  T. Horbury,et al.  Magnetosheath dynamic pressure enhancements: occurrence and typical properties , 2013 .

[17]  J. Gosling,et al.  MAGNETIC RECONNECTION IN THE SOLAR WIND AT CURRENT SHEETS ASSOCIATED WITH EXTREMELY SMALL FIELD SHEAR ANGLES , 2012 .

[18]  A. Dmitriev,et al.  Traveling magnetopause distortion related to a large‐scale magnetosheath plasma jet: THEMIS and ground‐based observations , 2012, 1302.3772.

[19]  R. Lundin,et al.  Plasma penetration of the dayside magnetopause , 2012 .

[20]  V. Angelopoulos,et al.  THEMIS observations and modeling of multiple ion species and EMIC waves: Implications for a vanishing He+ stop band , 2012 .

[21]  T. Horbury,et al.  Magnetosheath pressure pulses: Generation downstream of the bow shock from solar wind discontinuities , 2012 .

[22]  Yuri Shprits,et al.  Explaining sudden losses of outer radiation belt electrons during geomagnetic storms , 2012, Nature Physics.

[23]  T. Karlsson,et al.  Localized density enhancements in the magnetosheath: Three‐dimensional morphology and possible importance for impulsive penetration , 2012 .

[24]  H. Koskinen,et al.  Supermagnetosonic subsolar magnetosheath jets and their effects: from the solar wind to the ionospheric convection , 2012 .

[25]  E. Amata,et al.  High kinetic energy density jets in the Earth’s magnetosheath: A case study , 2011 .

[26]  J. Drake,et al.  THE VECTOR DIRECTION OF THE INTERSTELLAR MAGNETIC FIELD OUTSIDE THE HELIOSPHERE , 2010, 1001.0589.

[27]  O. D. Constantinescu,et al.  Magnetopause surface oscillation frequencies at different solar wind conditions , 2009 .

[28]  Uppsala,et al.  Supermagnetosonic jets behind a collisionless quasiparallel shock. , 2009, Physical review letters.

[29]  J. Chao,et al.  Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields , 2009 .

[30]  O. D. Constantinescu,et al.  Statistical study of the magnetopause motion: First results from THEMIS , 2009 .

[31]  C. Russell,et al.  Global hybrid simulations: Foreshock waves and cavitons under radial interplanetary magnetic field geometry , 2009 .

[32]  Vassilis Angelopoulos,et al.  The Electric Field Instrument (EFI) for THEMIS , 2008 .

[33]  R. Abiad,et al.  The THEMIS ESA Plasma Instrument and In-flight Calibration , 2008 .

[34]  R. Treumann,et al.  High energy jets in the Earth’s magnetosheath: Implications for plasma dynamics and anomalous transport , 2008 .

[35]  Werner Magnes,et al.  The THEMIS Fluxgate Magnetometer , 2008 .

[36]  Vassilis Angelopoulos,et al.  The THEMIS Mission , 2008 .

[37]  P. Cassak,et al.  Asymmetric Magnetic Reconnection: General Theory and Collisional Simulations , 2007 .

[38]  Scot R. Elkington,et al.  Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field , 2003 .

[39]  A. Khrabrov,et al.  Orientation and motion of current layers: minimization of the Faraday residue , 1998 .

[40]  L. Přech,et al.  Transient flux enhancements in the magnetosheath , 1998 .

[41]  Y. Lin,et al.  Simulation of pressure pulses in the bow shock and magnetosheath driven by variations in interplanetary magnetic field direction , 1996 .

[42]  G. Paschmann,et al.  Low‐latitude dayside magnetopause and boundary layer for high magnetic shear: 2. Occurrence of magnetic reconnection , 1996 .

[43]  T. Phan,et al.  Low‐latitude dayside magnetopause and boundary layer for high magnetic shear: 1. Structure and motion , 1996 .

[44]  Y. Lin,et al.  Generation of dynamic pressure pulses downstream of the bow shock by variations in the interplanetary magnetic field orientation , 1996 .

[45]  Steven J. Schwartz,et al.  Quasi-parallel shocks: A patchwork of three-dimensional structures , 1991 .

[46]  C. Russell,et al.  Cold ion beams in the low latitude boundary layer during accelerated flow events , 1990 .

[47]  C. Russell,et al.  ISEE 1 & 2 observations of the oscillating magnetopause , 1988 .

[48]  Wolfgang Baumjohann,et al.  The magnetopause for large magnetic shear: AMPTE/IRM observations , 1986 .

[49]  C. Russell,et al.  The thickness of the magnetopause current layer: ISEE 1 and 2 observations , 1982 .

[50]  I. Papamastorakis,et al.  Evidence for magnetic field reconnection at the Earth's magnetopause , 1981 .

[51]  L. J. Cahill,et al.  Magnetopause structure and attitude from Explorer 12 observations. , 1967 .