Critical parameters of the three-dimensional Ising spin glass

We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L = 40 using the Janus dedicated computer. Our analysis takes into account leading-order corrections to scaling. We obtain Tc = 1.1019(29) for the critical temperature, ν = 2.562(42) for the thermal exponent, η = −0.3900(36) for the anomalous dimension, and ω = 1.12(10) for the exponent of the leading corrections to scaling. Standard (hyper)scaling relations yield α = −5.69(13), β = 0.782(10), and γ = 6.13(11). We also compute several universal quantities at Tc.

[1]  V. Martin-Mayor,et al.  Universality in the three-dimensional random-field Ising model. , 2013, Physical review letters.

[2]  A. Young,et al.  Correspondence between long-range and short-range spin glasses , 2012, 1207.7014.

[3]  V. Martin-Mayor,et al.  Numerical test of the Cardy-Jacobsen conjecture in the site-diluted Potts model in three dimensions. , 2012, 1205.0247.

[4]  Raffaele Tripiccione,et al.  Thermodynamic glass transition in a spin glass without time-reversal symmetry , 2012, Proceedings of the National Academy of Sciences.

[5]  D. Yllanes Rugged free-energy landscapes in disordered spin systems , 2011, 1111.0266.

[6]  V. Martin-Mayor,et al.  Critical behavior of the dilute antiferromagnet in a magnetic field , 2011 .

[7]  L. A. Fernandez,et al.  Finite-size scaling analysis of the distributions of pseudo-critical temperatures in spin glasses , 2011, 1108.1336.

[8]  G. Parisi,et al.  Static versus dynamic heterogeneities in the D = 3 Edwards-Anderson-Ising spin glass. , 2010, Physical review letters.

[9]  S. F. Schifano,et al.  Nature of the spin-glass phase at experimental length scales , 2010, 1003.2569.

[10]  L. A. Fernandez,et al.  Phase transition in the three dimensional Heisenberg spin glass: Finite-size scaling analysis , 2009, 0905.0322.

[11]  Andrea Pelissetto,et al.  Critical behavior of three-dimensional Ising spin glass models , 2008, 0809.3329.

[12]  H. Katzgraber,et al.  Universality and universal finite-size scaling functions in four-dimensional Ising spin glasses , 2008, 0803.3339.

[13]  G. Parisi,et al.  Dilute one-dimensional spin glasses with power law decaying interactions. , 2008, Physical review letters.

[14]  E. Marinari,et al.  Critical properties of the four-state commutative random permutation glassy Potts model in three and four dimensions , 2007, 0710.4246.

[15]  Denis Navarro,et al.  Simulating spin systems on IANUS, an FPGA-based computer , 2007, Comput. Phys. Commun..

[16]  Wolfhard Janke,et al.  Rugged Free Energy Landscapes , 2008 .

[17]  M. Hasenbusch,et al.  The critical behavior of 3D Ising spin glass models: universality and scaling corrections , 2007, 0710.1980.

[18]  C. Newman,et al.  The Percolation Signature of the Spin Glass Transition , 2007, 0707.0073.

[19]  T. Jörg Critical behavior of the three-dimensional bond-diluted ising spin glass : Finite-size scaling functions and universality , 2006 .

[20]  A. Tarancón,et al.  Spin-glass transition of the three-dimensional Heisenberg spin glass. , 2006, Physical review letters.

[21]  A. Pelissetto,et al.  Critical behaviour of the random-anisotropy model in the strong-anisotropy limit , 2006, cond-mat/0604124.

[22]  H. Takayama,et al.  Extended scaling scheme for critically divergent quantities in ferromagnets and spin glasses. , 2006, Physical review letters.

[23]  A. Tarancón,et al.  Study of the phase transition in the 3D Ising spin glass from out-of-equilibrium numerical simulations , 2006, cond-mat/0603266.

[24]  H. Katzgraber,et al.  Universality in three-dimensional Ising spin glasses: A Monte Carlo study , 2006, cond-mat/0602212.

[25]  F. Guerra,et al.  Spin Glasses , 2005, cond-mat/0507581.

[26]  M. Pleimling,et al.  Dynamic critical behavior in Ising spin glasses , 2005, cond-mat/0506795.

[27]  A. Aharony,et al.  Test of universality in the Ising spin glass using high temperature graph expansion , 2004, cond-mat/0408167.

[28]  Tota Nakamura,et al.  Weak universality of spin-glass transitions in three-dimensional ±J models , 2003, cond-mat/0305314.

[29]  I. Campbell,et al.  Ordering temperature and critical exponents of the binomial Ising spin glass in dimension 3 , 2001, cond-mat/0103619.

[30]  C. L. Ullod,et al.  Critical behavior of the three-dimensional Ising spin glass , 2000, cond-mat/0006211.

[31]  S. Caracciolo,et al.  UNIVERSAL FINITE-SIZE SCALING FUNCTIONS IN THE 3D ISING SPIN GLASS , 1999, cond-mat/9904246.

[32]  G. Parisi,et al.  Phase structure of the three-dimensional Edwards-Anderson spin glass , 1998 .

[33]  A. Billoire,et al.  Energy barriers of spin glasses from multi‐overlap simulations , 1998, cond-mat/9811423.

[34]  G. Parisi,et al.  Critical exponents of the three dimensional diluted Ising model , 1998, cond-mat/9802273.

[35]  B. Berg,et al.  MULTIOVERLAP SIMULATIONS OF THE 3D EDWARDS-ANDERSON ISING SPIN GLASS , 1997, cond-mat/9712320.

[36]  G. Parisi,et al.  3D spin glass and 2D ferromagnetic XY model: a comparison , 1997, cond-mat/9707050.

[37]  G. Parisi,et al.  Simulation of three-dimensional Ising spin glass model using three replicas: Study of Binder cumulants , 1996, cond-mat/9603083.

[38]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[39]  V. Martin-Mayor,et al.  New universality class in three dimensions?: the antiferromagnetic RP2 model , 1995, hep-lat/9511003.

[40]  J. Mydosh Spin glasses : an experimental introduction , 1993 .

[41]  Lundgren,et al.  Static scaling in a short-range Ising spin glass. , 1991, Physical review. B, Condensed matter.

[42]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[43]  Fred Cooper,et al.  Solving φ1,24 field theory with Monte Carlo , 1982 .

[44]  Victor Martin-Mayor,et al.  Field Theory, the Renormalization Group and Critical Phenomena , 1984 .

[45]  M. P. Nightingale,et al.  Scaling theory and finite systems , 1976 .

[46]  S. Edwards,et al.  Theory of spin glasses , 1975 .