Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems

[1]  B. Straughan,et al.  Multi-component diffusion and penetrative convection , 1997 .

[2]  David W. Walker,et al.  Two Very Accurate and Efficient Methods for Computing Eigenvalues and Eigenfunctions in Porous Convection Problems , 1996 .

[3]  B. Straughan,et al.  Anisotropic porous penetrative convection , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  Jack J. Dongarra,et al.  Software Libraries for Linear Algebra Computations on High Performance Computers , 1995, SIAM Rev..

[5]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[6]  G. Mulone On the nonlinear stability of a fluid layer of a mixture heated and salted from below , 1994 .

[7]  Jaeyoung Choi,et al.  Crpc Research Into Linear Algebra Software for High Performance Computers , 1994, Int. J. High Perform. Comput. Appl..

[8]  Wesley H. Huang,et al.  The pseudospectral method for solving di8erential eigenvalue problems , 1994 .

[9]  S. C. Reddy,et al.  Energy growth in viscous channel flows , 1993, Journal of Fluid Mechanics.

[10]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part II: software and applications , 1993, TOMS.

[11]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms , 1993, TOMS.

[12]  K. Lindsay,et al.  A practical implementation of spectral methods resistant to the generation of spurious eigenvalues , 1992 .

[13]  Kathryn M. Butler,et al.  Three‐dimensional optimal perturbations in viscous shear flow , 1992 .

[14]  K. Lindsay,et al.  SOME REMARKS ON THE COMPUTATION OF THE EIGENVALUES OF LINEAR SYSTEMS , 1991 .

[15]  D. Fearn Eigensolutions of boundary value problems using inverse iteration , 1991 .

[16]  Yuriko Renardy,et al.  Weakly nonlinear behavior of periodic disturbances in two‐layer Couette–Poiseuille flow , 1989 .

[17]  A. Hooper The stability of two superposed viscous fluids in a channel , 1989 .

[18]  Ronald F. Boisvert,et al.  Elimination of spurious eigenvalues in the Chebyshev Tau spectral method , 1989 .

[19]  R. W. Douglass,et al.  A modified tau spectral method that eliminated spurious eigenvalues , 1989 .

[20]  A. Zebib Removal of spurious modes encountered in solving stability problems by spectral methods , 1987 .

[21]  Dale B. Haidvogel,et al.  The Accurate Solution of Poisson's Equation by Expansion in Chebyshev Polynomials , 1979 .

[22]  A. Davey A SIMPLE NUMERICAL METHOD FOR SOLVING ORR–SOMMERFELD PROBLEMS , 1973 .

[23]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[24]  S. Orszag Accurate solution of the Orr–Sommerfeld stability equation , 1971, Journal of Fluid Mechanics.

[25]  Chia-Shun Yih,et al.  Instability due to viscosity stratification , 1967, Journal of Fluid Mechanics.

[26]  D. Crighton,et al.  Instability of the large Reynolds number flow of a Newtonian fluid over a viscoelastic fluid , 1994 .

[27]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[28]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[29]  ScienceDirect,et al.  Applied numerical mathematics , 1985 .

[30]  L. Fox,et al.  Chebyshev Methods for Ordinary Differential Equations , 1962, Computer/law journal.