A review of generalized planning

Generalized planning studies the representation, computation and evaluation of solutions that are valid for multiple planning instances. These are topics studied since the early days of AI. However, in recent years, we are experiencing the appearance of novel formalisms to compactly represent generalized planning tasks, the solutions to these tasks (called generalized plans ) and efficient algorithms to compute generalized plans. The paper reviews recent advances in generalized planning and relates them to existing planning formalisms, such as planning with domain control knowledge and approaches for planning under uncertainty , that also aim at generality.

[1]  Joshua B. Tenenbaum,et al.  Human-level concept learning through probabilistic program induction , 2015, Science.

[2]  Hector Geffner,et al.  Learning Generalized Policies from Planning Examples Using Concept Languages , 2004, Applied Intelligence.

[3]  Roni Khardon,et al.  Learning Action Strategies for Planning Domains , 1999, Artif. Intell..

[4]  Hector Geffner,et al.  A Translation-Based Approach to Contingent Planning , 2009, IJCAI.

[5]  Mark Craven,et al.  Relational Learning with Statistical Predicate Invention: Better Models for Hypertext , 2001, Machine Learning.

[6]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[7]  Craig A. Knoblock,et al.  PDDL-the planning domain definition language , 1998 .

[8]  Hector Geffner,et al.  Probabilistic Plan Recognition Using Off-the-Shelf Classical Planners , 2010, AAAI.

[9]  Sorin Lerner,et al.  Interactive parser synthesis by example , 2015, PLDI.

[10]  Javier Segovia Aguas,et al.  Automatic Generation of High-Level State Features for Generalized Planning , 2016, IJCAI.

[11]  Derek Long,et al.  Plan Constraints and Preferences in PDDL3 , 2006 .

[12]  Hector J. Levesque,et al.  GOLOG: A Logic Programming Language for Dynamic Domains , 1997, J. Log. Program..

[13]  Bernhard Nebel,et al.  On the Compilability and Expressive Power of Propositional Planning Formalisms , 2000, J. Artif. Intell. Res..

[14]  Sumit Gulwani,et al.  Automating string processing in spreadsheets using input-output examples , 2011, POPL '11.

[15]  Paolo Traverso,et al.  Automated planning - theory and practice , 2004 .

[16]  Hector J. Levesque,et al.  Planning with Loops , 2005, IJCAI.

[17]  Manuela M. Veloso,et al.  DISTILL: Learning Domain-Specific Planners by Example , 2003, ICML.

[18]  Jörg Hoffmann,et al.  Ordered Landmarks in Planning , 2004, J. Artif. Intell. Res..

[19]  Javier Segovia Aguas,et al.  Generalized Planning with Procedural Domain Control Knowledge , 2016, ICAPS.

[20]  Stuart J. Russell,et al.  Angelic Semantics for High-Level Actions , 2007, ICAPS.

[21]  Hector Geffner,et al.  Heuristics for Planning, Plan Recognition and Parsing , 2016, ArXiv.

[22]  Paul E. Utgoff,et al.  Incremental Induction of Decision Trees , 1989, Machine Learning.

[23]  Marco Pistore,et al.  Weak, strong, and strong cyclic planning via symbolic model checking , 2003, Artif. Intell..

[24]  Dana S. Nau,et al.  Translating HTNs to PDDL: A Small Amount of Domain Knowledge Can Go a Long Way , 2009, IJCAI.

[25]  Hector Geffner,et al.  Modeling and Computation in Planning: Better Heuristics from More Expressive Languages , 2015, ICAPS.

[26]  Piergiorgio Bertoli,et al.  Conformant planning via symbolic model checking and heuristic search , 2004, Artif. Intell..

[27]  Robert Givan,et al.  Approximate Policy Iteration with a Policy Language Bias , 2003, NIPS.

[28]  Neil Immerman,et al.  Directed Search for Generalized Plans Using Classical Planners , 2011, ICAPS.

[29]  Richard Fikes,et al.  Learning and Executing Generalized Robot Plans , 1993, Artif. Intell..

[30]  Maria Fox,et al.  VAL: automatic plan validation, continuous effects and mixed initiative planning using PDDL , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[31]  Patrik Haslum,et al.  Optimal Planning with Axioms , 2015, IJCAI.

[32]  Anders Jonsson The Role of Macros in Tractable Planning , 2009, J. Artif. Intell. Res..

[33]  Blai Bonet,et al.  Policies that Generalize: Solving Many Planning Problems with the Same Policy , 2015, IJCAI.

[34]  Christer Bäckström,et al.  Automaton Plans , 2014, J. Artif. Intell. Res..

[35]  Blai Bonet,et al.  A Concise Introduction to Models and Methods for Automated Planning , 2013, A Concise Introduction to Models and Methods for Automated Planning.

[36]  Ivan Serina,et al.  Plan Stability: Replanning versus Plan Repair , 2006, ICAPS.

[37]  BodikRastislav,et al.  Combinatorial sketching for finite programs , 2006 .

[38]  Javier Segovia Aguas,et al.  Generating Context-Free Grammars using Classical Planning , 2017, IJCAI.

[39]  Gerhard Lakemeyer,et al.  Integrating Golog and Planning : An Empirical Evaluation , 2008 .

[40]  Hector Geffner,et al.  Purely Declarative Action Representations are Overrated : Classical Planning with Simulators , 2017 .

[41]  Håkan L. S. Younes,et al.  PPDDL 1 . 0 : An Extension to PDDL for Expressing Planning Domains with Probabilistic Effects , 2004 .

[42]  Ivan Serina,et al.  Progress in Case-Based Planning , 2015, ACM Comput. Surv..

[43]  M. Veloso,et al.  Loop D ISTILL : Learning Looping Domain-Specific Planners from Example Plans , 2004 .

[44]  Cédric Pralet,et al.  Constraint-Based Controller Synthesis in Non-Deterministic and Partially Observable Domains , 2010, ECAI.

[45]  A. Gerevini,et al.  Plan Constraints and Preferences in PDDL 3 The Language of the Fifth International Planning Competition , 2005 .

[46]  Fahiem Bacchus,et al.  Using temporal logics to express search control knowledge for planning , 2000, Artif. Intell..

[47]  Blai Bonet,et al.  Belief Tracking for Planning with Sensing: Width, Complexity and Approximations , 2014, J. Artif. Intell. Res..

[48]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[49]  Blai Bonet,et al.  Automatic Derivation of Finite-State Machines for Behavior Control , 2010, AAAI.

[50]  Hector Geffner,et al.  ∃-STRIPS: Existential Quantification in Planning and Constraint Satisfaction , 2016, IJCAI.

[51]  Jörg Hoffmann,et al.  Simulated Penetration Testing: From "Dijkstra" to "Turing Test++" , 2015, ICAPS.

[52]  Jonathan Schaeffer,et al.  Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators , 2005, J. Artif. Intell. Res..

[53]  Bernhard Nebel,et al.  On the Relative Expressiveness of ADL and Golog: The Last Piece in the Puzzle , 2008, KR.

[54]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[55]  Sanjit A. Seshia,et al.  Combinatorial sketching for finite programs , 2006, ASPLOS XII.

[56]  John K. Slaney,et al.  Blocks World revisited , 2001, Artif. Intell..

[57]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[58]  Tom M. Mitchell,et al.  Generalization as Search , 2002 .

[59]  Stephen Muggleton,et al.  Inductive Logic Programming: Issues, Results and the Challenge of Learning Language in Logic , 1999, Artif. Intell..

[60]  Robert Givan,et al.  Learning Control Knowledge for Forward Search Planning , 2008, J. Mach. Learn. Res..

[61]  Carmel Domshlak,et al.  Fault Tolerant Planning: Complexity and Compilation , 2013, ICAPS.

[62]  Eugene Fink,et al.  Integrating planning and learning: the PRODIGY architecture , 1995, J. Exp. Theor. Artif. Intell..

[63]  Patrik Haslum,et al.  Numeric Planning with Disjunctive Global Constraints via SMT , 2016, ICAPS.

[64]  Blai Bonet,et al.  Automatic Polytime Reductions of NP Problems into a Fragment of STRIPS , 2011, ICAPS.

[65]  Lukás Chrpa,et al.  The 2014 International Planning Competition: Progress and Trends , 2015, AI Mag..

[66]  Rajeev Alur,et al.  Syntax-guided synthesis , 2013, 2013 Formal Methods in Computer-Aided Design.

[67]  GulwaniSumit Automating string processing in spreadsheets using input-output examples , 2011 .

[68]  Javier Segovia Aguas,et al.  Unsupervised Classification of Planning Instances , 2017, ICAPS.

[69]  Sumit Gulwani,et al.  Inductive programming meets the real world , 2015, Commun. ACM.

[70]  Christian J. Muise,et al.  Computing Contingent Plans via Fully Observable Non-Deterministic Planning , 2014, AAAI.

[71]  Jorge A. Baier,et al.  Exploiting Procedural Domain Control Knowledge in State-of-the-Art Planners , 2007, ICAPS.

[72]  Yuxiao Hu,et al.  A Correctness Result for Reasoning about One-Dimensional Planning Problems , 2010, IJCAI.

[73]  J. R. Quinlan Learning Logical Definitions from Relations , 1990 .

[74]  Lukás Chrpa,et al.  Generation of macro-operators via investigation of action dependencies in plans , 2010, The Knowledge Engineering Review.

[75]  Hector J. Levesque,et al.  On the Semantics of Deliberation in IndiGolog — from Theory to Implementation , 2002, Annals of Mathematics and Artificial Intelligence.

[76]  Sergio Jiménez Celorrio,et al.  Computing Plans with Control Flow and Procedures Using a Classical Planner , 2015, SOCS.

[77]  Yuxiao Hu,et al.  A Generic Technique for Synthesizing Bounded Finite-State Controllers , 2013, ICAPS.

[78]  Ronen I. Brafman,et al.  Conformant planning via heuristic forward search: A new approach , 2004, Artif. Intell..

[79]  Malik Ghallab,et al.  Chapter 14 – Temporal Planning , 2004 .

[80]  Jussi Rintanen,et al.  Planning as satisfiability: Heuristics , 2012, Artif. Intell..

[81]  Dana S. Nau,et al.  A hierarchical goal-based formalism and algorithm for single-agent planning , 2012, AAMAS.

[82]  Hongseok Yang,et al.  Nested Hoare Triples and Frame Rules for Higher-Order Store , 2009, CSL.

[83]  Andrew Coles,et al.  Marvin: A Heuristic Search Planner with Online Macro-Action Learning , 2011, J. Artif. Intell. Res..

[84]  Joseph Sifakis,et al.  Model checking , 1996, Handbook of Automated Reasoning.

[85]  Stephen Cresswell,et al.  Compilation of LTL Goal Formulas into PDDL , 2004, ECAI.

[86]  Christian J. Muise,et al.  Non-Deterministic Planning With Conditional Effects , 2014, ICAPS.

[87]  Hector Geffner,et al.  Effective Heuristics and Belief Tracking for Planning with Incomplete Information , 2011, ICAPS.

[88]  Dana S. Nau,et al.  SHOP2: An HTN Planning System , 2003, J. Artif. Intell. Res..

[89]  Edwin P. D. Pednault,et al.  ADL: Exploring the Middle Ground Between STRIPS and the Situation Calculus , 1989, KR.

[90]  Jussi Rintanen,et al.  Impact of Modeling Languages on the Theory and Practice in Planning Research , 2015, AAAI.

[91]  Yuxiao Hu,et al.  Generalized Planning: Synthesizing Plans that Work for Multiple Environments , 2011, IJCAI.

[92]  Fahiem Bacchus,et al.  Extending the Knowledge-Based Approach to Planning with Incomplete Information and Sensing , 2004, ICAPS.

[93]  Bernhard Nebel,et al.  In Defense of PDDL Axioms , 2003, IJCAI.

[94]  Emina Torlak,et al.  Growing solver-aided languages with rosette , 2013, Onward!.

[95]  Hector Geffner,et al.  Compiling Uncertainty Away in Conformant Planning Problems with Bounded Width , 2009, J. Artif. Intell. Res..

[96]  Raquel Fuentetaja,et al.  Scaling up Heuristic Planning with Relational Decision Trees , 2014, J. Artif. Intell. Res..

[97]  Hector Geffner,et al.  Purely Declarative Action Descriptions are Overrated: Classical Planning with Simulators , 2017, IJCAI.

[98]  Javier Segovia Aguas,et al.  Hierarchical Finite State Controllers for Generalized Planning , 2016, IJCAI.

[99]  M. Fox,et al.  The 3rd International Planning Competition: Results and Analysis , 2003, J. Artif. Intell. Res..

[100]  Neil Immerman,et al.  A new representation and associated algorithms for generalized planning , 2011, Artif. Intell..

[101]  Alan Fern,et al.  The first learning track of the international planning competition , 2011, Machine Learning.

[102]  Jorge A. Baier,et al.  ConGolog, Sin Trans: Compiling ConGolog into Basic Action Theories for Planning and Beyond , 2008, KR.