Chaos in a Noisy World: New Methods and Evidence from Time-Series Analysis

Chaos is usually regarded as a distinct alternative to random effects such as environmental fluctuations or external disturbances. We argue that strict separation between chaotic and stochastic dynamics in ecological systems is unnecessary and misleading, and we present a more comprehensive approach for systems subject to stochastic perturbations. The defining property of chaos is sensitive dependence on initial conditions. Chaotic systems are "noise amplifiers" that magnify perturbations; nonchaotic systems are "noise mufflers" that dampen perturbations. We also present statistical methods for detecting chaos in time-series data, based on using nonlinear time-series modeling to estimate the Lyapunov exponent λ, which gives the average rate at which perturbation effects grow (λ > 0) or decay (λ < 0). These methods allow for dynamic noise and can detect low-dimensional chaos with realistic amounts of data. Results for natural and laboratory populations span the entire range from noise-dominated and strongly stable dynamics through weak chaos. The distribution of estimated Lyapunov exponents is concentrated near the transition between stable and chaotic dynamics. In such borderline cases the fluctuations in short-term Lyapunov exponents may be more informative than the average exponent λ for characterizing nonlinear dynamics.

[1]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[2]  H. M. Tsuchiya,et al.  Predator-Prey Interactions of Dictyostelium discoideum and Escherichia coli in Continuous Culture , 1972, Journal of bacteriology.

[3]  William F. Morris,et al.  PROBLEMS IN DETECTING CHAOTIC BEHAVIOR IN NATURAL POPULATIONS BY FITTING SIMPLE DISCRETE MODELS , 1990 .

[4]  W M Schaffer,et al.  Effects of noise on some dynamical models in ecology , 1986, Journal of mathematical biology.

[5]  G. Varley,et al.  Population Changes in German Forest Pests , 1949 .

[6]  Douglas W. Nychka,et al.  LENNS, a program to estimate the dominant Lyapunov exponent of noisy nonlinear systems from time series data , 1992 .

[7]  Halbert White,et al.  On learning the derivatives of an unknown mapping with multilayer feedforward networks , 1992, Neural Networks.

[8]  John Guckenheimer,et al.  Noise in chaotic systems , 1982 .

[9]  Leonard A. Smith Identification and prediction of low dimensional dynamics , 1992 .

[10]  R. May,et al.  Bifurcations and Dynamic Complexity in Simple Ecological Models , 1976, The American Naturalist.

[11]  G. Salt,et al.  Predation in an Experimental Protozoan Population (Woodruffia-Paramecium) , 1967 .

[12]  G. Wahba Spline models for observational data , 1990 .

[13]  Rodney C. Wolff,et al.  Local Lyapunov Exponents: Looking Closely at Chaos , 1992 .

[14]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[15]  H. Southern,et al.  The stability and instability of small mammal populations , 1979 .

[16]  G. Varley,et al.  Key factors in population studies. , 1960 .

[17]  Andrew R. Barron,et al.  Complexity Regularization with Application to Artificial Neural Networks , 1991 .

[18]  J. Yorke,et al.  Recurrent outbreaks of measles, chickenpox and mumps. II. Systematic differences in contact rates and stochastic effects. , 1973, American journal of epidemiology.

[19]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[20]  R M May,et al.  Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos , 1974, Science.

[21]  Douglas W. Nychka,et al.  Exploring Fitness Surfaces , 1994, The American Naturalist.

[22]  A. Barron Approximation and Estimation Bounds for Artificial Neural Networks , 1991, COLT '91.

[23]  C. Elton,et al.  Fluctuations in Numbers of the Muskrat (Ondatra zibethica) in Canada , 1942 .

[24]  G. Wahba,et al.  Gcvpack – routines for generalized cross validation , 1987 .

[25]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[26]  S. Kauffman,et al.  Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches. , 1991, Journal of theoretical biology.

[27]  S. Ellner,et al.  Chaos in Ecology: Is Mother Nature a Strange Attractor?* , 1993 .

[28]  William W. Murdoch,et al.  Aggregation of parasitoids and the detection of density dependence in field populations , 1987 .

[29]  B. Huberman,et al.  Fluctuations and simple chaotic dynamics , 1982 .

[30]  S. Utida,et al.  Population Fluctuation, an Experimental and Theoretical Approach , 1957 .

[31]  P. Turchin Chaos and stability in rodent population dynamics: evidence from non-linear time-series analysis , 1993 .

[32]  Martin Casdagli,et al.  Nonlinear Modeling And Forecasting , 1992 .

[33]  A. Gallant,et al.  Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data , 1991 .

[34]  T. Ikegami,et al.  Evolution of host-parasitoid network through homeochaotic dynamics. , 1992, Chaos.

[35]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[36]  T. Royama,et al.  Fundamental Concepts and Methodology for the Analysis of Animal Population Dynamics, with Particular Reference to Univoltine Species , 1981 .

[37]  A. Nicholson,et al.  The Self-Adjustment of Populations to Change , 1957 .

[38]  William M. Schaffer,et al.  Stretching and Folding in Lynx Fur Returns: Evidence for a Strange Attractor in Nature? , 1984, The American Naturalist.

[39]  William M. Schaffer,et al.  POPULATION CYCLES IN MAMMALS AND BIRDS : DOES PERIODICITY SCALE WITH BODY SIZE ? , 1991 .

[40]  Stephen P. Ellner,et al.  Detecting nonlinearity and chaos in epidemic data , 1993 .

[41]  Y. Kifer Ergodic theory of random transformations , 1986 .

[42]  R. A. Rausch,et al.  Notes on the Wolverine in Alaska and the Yukon Territory , 1972 .

[43]  A. Gallant,et al.  Finding Chaos in Noisy Systems , 1992 .

[44]  Mark Kot,et al.  Do Strange Attractors Govern Ecological Systems , 1985 .

[45]  H. M. Tsuchiya,et al.  Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii, and Glucose in a Minimal Medium , 1973, Journal of bacteriology.

[46]  D. Stoddart,et al.  Ecology of small mammals , 1979, Springer Netherlands.

[47]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[48]  R Mead,et al.  The dynamics of discrete-time stochastic models of population growth. , 1980, Journal of theoretical biology.

[49]  T. Ikegami,et al.  Homeochaos: dynamic stability of a symbiotic network with population dynamics and evolving mutation rates , 1992 .

[50]  F. Takens Detecting strange attractors in turbulence , 1981 .

[51]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[52]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[53]  Martin Casdagli,et al.  A Dynamical Systems Approach to Modeling Input-Output Systems , 1992 .

[54]  J. Doyne Farmer,et al.  Deterministic noise amplifiers , 1992 .

[55]  K. Briggs An improved method for estimating Liapunov exponents of chaotic time series , 1990 .

[56]  L. Luckinbill,et al.  Coexistence in Laboratory Populations of Paramecium Aurelia and Its Predator Didinium Nasutum , 1973 .

[57]  W M Schaffer,et al.  The case for chaos in childhood epidemics. II. Predicting historical epidemics from mathematical models , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[58]  W M Schaffer,et al.  Chaos in ecological systems: The coals that Newcastle forgot. , 1986, Trends in ecology & evolution.

[59]  F. Evans,et al.  Voles, Mice and Lemmings: Problems in Population Dynamics , 1942 .

[60]  L. Hansson,et al.  Levels of Density Variation: The Adequacy of Indices and Chaos , 1991 .

[61]  A. Gallant,et al.  Estimating the Lyapunov Exponent of a Chaotic System with Nonparametric Regression , 1992 .

[62]  T. Burnett AN ACARINE PREDATOR-PREY POPULATION INFESTING STORED PRODUCTS , 1964 .

[63]  Brown,et al.  Computing the Lyapunov spectrum of a dynamical system from an observed time series. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[64]  M. G. Bulmer,et al.  A Statistical Analysis of the 10-Year Cycle in Canada , 1974 .

[65]  F. S. Bodenheimer,et al.  Problems of animal ecology , 1939 .

[66]  Herbert W. Hethcote,et al.  Epidemic models: Their structure and relation to data , 1996 .

[67]  D. A. MacLulich THE PLACE OF CHANCE IN POPULATION PROCESSES , 1957 .

[68]  A A Berryman,et al.  Are ecological systems chaotic - And if not, why not? , 1989, Trends in ecology & evolution.

[69]  Peter Turchin,et al.  Complex Dynamics in Ecological Time Series , 1992 .

[70]  J. Davidson,et al.  Annual Trends in a natural Population of Thrips imaginis (Thysanoptera). , 1948 .

[71]  W. Schaffer,et al.  Chaos reduces species extinction by amplifying local population noise , 1993, Nature.

[72]  H. B. Wilson,et al.  Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[73]  H. White Some Asymptotic Results for Learning in Single Hidden-Layer Feedforward Network Models , 1989 .

[74]  Henry D. I. Abarbanel,et al.  Local Lyapunov exponents computed from observed data , 1992 .

[75]  B. G. Veilleux,et al.  AN ANALYSIS OF THE PREDATORY INTERACTION BETWEEN PARAMECIUM AND DIDINIUM , 1979 .

[76]  A. D. Middleton Periodic Fluctuations in British Game Populations , 1934 .

[77]  R. Smith,et al.  Estimating Dimension in Noisy Chaotic Time Series , 1992 .

[78]  Henry D. I. Abarbanel,et al.  Variation of Lyapunov exponents on a strange attractor , 1991 .