Bayesian Computation and Stochastic Systems

Markov chain Monte Carlo (MCMC) methods have been used extensively in statistical physics over the last 40 years, in spatial statistics for the past 20 and in Bayesian image analysis over the last decade. In the last five years, MCMC has been introduced into significance testing, general Bayesian inference and maximum likelihood estimation. This paper presents basic methodology of MCMC, emphasizing the Bayesian paradigm, conditional probability and the intimate relationship with Markov random fields in spatial statistics. Hastings algorithms are discussed, including Gibbs, Metropolis and some other variations. Pairwise difference priors are described and are used subsequently in three Bayesian applications, in each of which there is a pronounced spatial or temporal aspect to the modeling. The examples involve logistic regression in the presence of unobserved covariates and ordinal factors; the analysis of agricultural field experiments, with adjustment for fertility gradients; and processing of low-resolution medical images obtained by a gamma camera. Additional methodological issues arise in each of these applications and in the Appendices. The paper lays particular emphasis on the calculation of posterior probabilities and concurs with others in its view that MCMC facilitates a fundamental breakthrough in applied Bayesian modeling.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  R. Fisher Statistical Methods for Research Workers , 1971 .

[6]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[7]  H. D. Patterson,et al.  A new class of resolvable incomplete block designs , 1976 .

[8]  M. S. Bartlett,et al.  Nearest Neighbour Models in the Analysis of Field Experiments , 1978 .

[9]  Michael Creutz,et al.  Confinement and the critical dimensionality of space-time , 1979 .

[10]  B. Ripley Simulating Spatial Patterns: Dependent Samples from a Multivariate Density , 1979 .

[11]  D. A. Williams,et al.  Extra‐Binomial Variation in Logistic Linear Models , 1982 .

[12]  T R Holford,et al.  The estimation of age, period and cohort effects for vital rates. , 1983, Biometrics.

[13]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Peter Green Linear models for field trials, smoothing and cross-validation , 1985 .

[15]  A. Seheult,et al.  Analysis of Field Experiments by Least Squares Smoothing , 1985 .

[16]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[17]  Donald Geman,et al.  Bayesian Image Analysis , 1986 .

[18]  Françoise Fogelman-Soulié,et al.  Disordered Systems and Biological Organization , 1986, NATO ASI Series.

[19]  Emlyn Williams,et al.  A neighbour model for field experiments , 1986 .

[20]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[21]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[22]  Brian R. Cullis,et al.  Residual maximum likelihood (REML) estimation of a neighbour model for field experiments , 1987 .

[23]  Stuart Geman,et al.  Statistical methods for tomographic image reconstruction , 1987 .

[24]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[25]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[26]  Hans R. Künsch,et al.  Intrinsic autoregressions and related models on the two-dimensional lattice , 1987 .

[27]  李幼升,et al.  Ph , 1989 .

[28]  Peter Clifford,et al.  Reconstruction of polygonal images , 1989 .

[29]  D. M. Keenan,et al.  Towards automated image understanding , 1989 .

[30]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Basilis Gidas,et al.  A Renormalization Group Approach to Image Processing Problems , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  W. A. Wright A Markov random field approach to data fusion and colour segmentation , 1989, Image Vis. Comput..

[33]  J. Besag,et al.  Generalized Monte Carlo significance tests , 1989 .

[34]  R. Martin,et al.  Leave‐K‐Out Diagnostics for Time Series , 1989 .

[35]  D. Geman Random fields and inverse problems in imaging , 1990 .

[36]  P. Green Bayesian reconstructions from emission tomography data using a modified EM algorithm. , 1990, IEEE transactions on medical imaging.

[37]  Donald Geman,et al.  Boundary Detection by Constrained Optimization , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[39]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[40]  Ulf Grenander,et al.  Hands: A Pattern Theoretic Study of Biological Shapes , 1990 .

[41]  J. N. R. Jeffers,et al.  Graphical Models in Applied Multivariate Statistics. , 1990 .

[42]  A. L. Sutherland,et al.  Finding spiral structures in images of galaxies , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[43]  R. J. Martin The use of time-series models and methods in the analysis of agricultural field trials , 1990 .

[44]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[45]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[46]  Joseph A. O'Sullivan,et al.  Representing and computing regular languages on massively parallel networks , 1991, IEEE Trans. Neural Networks.

[47]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[48]  Dale L. Zimmerman,et al.  A random field approach to the analysis of field-plot experiments and other spatial experiments , 1991 .

[49]  J. Besag,et al.  Sequential Monte Carlo p-values , 1991 .

[50]  U. Grenander,et al.  Structural Image Restoration through Deformable Templates , 1991 .

[51]  F. S. Cohen,et al.  Classification of Rotated and Scaled Textured Images Using Gaussian Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  The empirical efficiency and validity of two neighbour models , 1991 .

[53]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[54]  P. Green,et al.  Global and local priors, and the location of lesions using gamma-camera imagery , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[55]  Brian R. Cullis,et al.  Spatial analysis of field experiments : an extension to two dimensions , 1991 .

[56]  Y. Amit On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian distributions , 1991 .

[57]  M. Jubb,et al.  Aggregation and refinement in binary image restoration , 1991 .

[58]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[59]  W. Gilks,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 1992 .

[60]  Arnoldo Frigessi,et al.  Stochastic models, statistical methods, and algorithms in image analysis : proceedings of the special year on image analysis held in Rome, Italy, 1990 , 1992 .

[61]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[63]  Antonio Possolo,et al.  Spatial Statistics and Imaging , 1992 .

[64]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[65]  N. Sheehan,et al.  On the irreducibility of a Markov chain defined on a space of genotype configurations by a sampling scheme. , 1993, Biometrics.

[66]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[67]  A. F. M. Smith,et al.  Dynamic image analysis using Bayesian shape and texture models , 1993 .

[68]  Kanti V. Mardia,et al.  Image warping and Bayesian reconstruction with grey-level templates , 1993 .

[69]  A. Baddeley,et al.  Stochastic geometry models in high-level vision , 1993 .

[70]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[71]  Julian Besag,et al.  Towards Bayesian image analysis , 1993 .

[72]  Peter Green,et al.  Spatial statistics and Bayesian computation (with discussion) , 1993 .

[73]  Carlo Berzuini,et al.  Bayesian Inference on the Lexis Diagram , 1993 .

[74]  Nicholas G. Polson,et al.  On the Geometric Convergence of the Gibbs Sampler , 1994 .

[75]  H. Künsch Robust priors for smoothing and image restoration , 1994 .

[76]  A. Raftery,et al.  Analysis of Agricultural Field Trials in the Presence of Outliers and Fertility Jumps , 1994 .

[77]  R. Kempton,et al.  Statistical analysis of two-dimensional variation in variety yield trials , 1994, The Journal of Agricultural Science.

[78]  V. Johnson A Model for Segmentation and Analysis of Noisy Images , 1994 .

[79]  George S. Fishman Markov Chain Sampling and the Product Estimator , 1994, Oper. Res..

[80]  P. Green,et al.  Modelling data from single photon emission computed tomography , 1994 .

[81]  J. Besag,et al.  On conditional and intrinsic autoregressions , 1995 .

[82]  Ingrid K. Glad,et al.  A Bayesian approach to synthetic magnetic resonance imaging , 1995 .

[83]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[84]  Bin Yu,et al.  Regeneration in Markov chain samplers , 1995 .

[85]  V. Johnson Studying Convergence of Markov Chain Monte Carlo Algorithms Using Coupled Sample Paths , 1996 .

[86]  L. Bernardinelli,et al.  Bayesian methods for mapping disease risk , 1996 .