Invariant visual responses from attentional gain fields.

Inferotemporal (IT) neurons exhibit a substantial degree of invariance with respect to translation of images used as visual stimuli. Through theoretical and computer-modeling methods, we show how translation-invariant receptive fields, like those of IT neurons, can be generated from the responses of V4 neurons if the effects of attention are taken into account. The model incorporates a recently reported form of attention-dependent gain modulation in V4 and produces IT receptive fields that shift so they are centered at the point where attention is directed. Receptive fields of variable, attention-controlled spatial scale are obtained when the mechanism is extended to scale-dependent attentional gain fields. The results indicate that gain modulation may play analogous roles in the dorsal and ventral visual pathways, generating transformations from retinal coordinates to body- and object-centered systems, respectively.

[1]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[2]  Geoffrey E. Hinton A Parallel Computation that Assigns Canonical Object-Based Frames of Reference , 1981, IJCAI.

[3]  Robert Desimone,et al.  PROPERTIES OF INFERIOR TEMPORAL NEURONS IN THE MACAQUE , 1981 .

[4]  R. Desimone,et al.  Shape recognition and inferior temporal neurons. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[7]  J K Hoober,et al.  Synthesis of Chlorophyllide b from Protochlorophyllide in Chlamydomonas reinhardtii y-1 , 1985, Science.

[8]  Geoffrey E. Hinton,et al.  Shape Recognition and Illusory Conjunctions , 1985, IJCAI.

[9]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[10]  D. Field,et al.  The structure and symmetry of simple-cell receptive-field profiles in the cat’s visual cortex , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[11]  D C Van Essen,et al.  Shifter circuits: a computational strategy for dynamic aspects of visual processing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[13]  Y. Miyashita,et al.  Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita , 1988, Nature.

[14]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[15]  M. V. Rossum,et al.  In Neural Computation , 2022 .

[16]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  Peter Földiák,et al.  Learning Invariance from Transformation Sequences , 1991, Neural Comput..

[18]  Michael S. Landy,et al.  Nonlinear Model of Neural Responses in Cat Visual Cortex , 1991 .

[19]  P. H. Schiller,et al.  The role of the primate extrastriate area V4 in vision. , 1991, Science.

[20]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[21]  Gary D. Cravens,et al.  A Backpropagation Programmed Neural Network That Simulates the Properties of a Subset of Nucleus Reticularis Tegmenti Pontis Neurons , 1992 .

[22]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[23]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[25]  Richard A. Andersen,et al.  Coordinate transformations in the representation of spatial information , 1993, Current Opinion in Neurobiology.

[26]  D. V. van Essen,et al.  Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. , 1993, Science.

[27]  A. Katchman,et al.  Early anoxia-induced vesicular glutamate release results from mobilization of calcium from intracellular stores. , 1993, Journal of neurophysiology.

[28]  M. Tovée,et al.  Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque. , 1994, Journal of neurophysiology.

[29]  R. Desimone,et al.  Inferior temporal mechanisms for invariant object recognition. , 1994, Cerebral cortex.

[30]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[31]  Terrence J. Sejnowski,et al.  Spatial Representations in the Parietal Cortex May Use Basis Functions , 1994, NIPS.

[32]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[33]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[34]  P. H. Schiller Effect of lesions in visual cortical area V4 on the recognition of transformed objects , 1995, Nature.

[35]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[36]  R. Andersen,et al.  Head position signals used by parietal neurons to encode locations of visual stimuli , 1995, Nature.

[37]  L F Abbott,et al.  Transfer of coded information from sensory to motor networks , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  D. V. van Essen,et al.  Responses in area V4 depend on the spatial relationship between stimulus and attention. , 1996, Journal of neurophysiology.

[39]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.