On algorithms with good mesh properties for problems with moving boundaries based on the Harmonic Map Heat Flow and the DeTurck trick

In this paper, we present a general approach to obtain numerical schemes with good mesh properties for problems with moving boundaries, that is for evolving submanifolds with boundaries. This includes moving domains and surfaces with boundaries. Our approach is based on a variant of the so-called the DeTurck trick. By reparametrizing the evolution of the submanifold via solutions to the harmonic map heat flow of manifolds with boundary, we obtain a new velocity field for the motion of the submanifold. Moving the vertices of the computational mesh according to this velocity field automatically leads to computational meshes of high quality both for the submanifold and its boundary. Using the ALE-method in [16], this idea can be easily built into algorithms for the computation of physical problems with moving boundaries.

[1]  B. Gustafsson,et al.  Conformal and Potential Analysis in Hele-Shaw Cells , 2006 .

[2]  James Eells,et al.  Restrictions on harmonic maps of surfaces , 1976 .

[3]  Martin Rumpf,et al.  Axioms and variational problems in surface parameterization , 2004, Comput. Aided Geom. Des..

[4]  R. Hamilton,et al.  The formations of singularities in the Ricci Flow , 1993 .

[5]  D. DeTurck Deforming metrics in the direction of their Ricci tensors , 1983 .

[6]  Richard S. Hamilton,et al.  Harmonic Maps of Manifolds with Boundary , 1975 .

[7]  E. J. Hinch,et al.  Numerical simulations of sink flow in the Hele-Shaw cell with small surface tension , 1997, European Journal of Applied Mathematics.

[8]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[9]  J. Eells,et al.  Harmonic Mappings of Riemannian Manifolds , 1964 .

[10]  Ricardo H. Nochetto,et al.  Geometrically Consistent Mesh Modification , 2010, SIAM J. Numer. Anal..

[11]  Robert D. Russell,et al.  Moving Mesh Strategy Based on a Gradient Flow Equation for Two-Dimensional Problems , 1998, SIAM J. Sci. Comput..

[12]  C. M. Elliott,et al.  Weak and variational methods for moving boundary problems , 1982 .

[13]  Charles Baker,et al.  The mean curvature flow of submanifolds of high codimension , 2011, 1104.4409.

[14]  C. M. Elliott,et al.  Error analysis for an ALE evolving surface finite element method , 2014, 1403.1402.

[15]  Robert D. Russell,et al.  Adaptive Moving Mesh Methods , 2010 .

[16]  Karol Mikula,et al.  Manifold Evolution with Tangential Redistribution of Points , 2014, SIAM J. Sci. Comput..

[17]  C. M. Elliott,et al.  An ALE ESFEM for Solving PDEs on Evolving Surfaces , 2012 .

[18]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[19]  Yalin Wang,et al.  Optimal global conformal surface parameterization , 2004, IEEE Visualization 2004.

[20]  A. M. Winslow Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[21]  Guillermo Sapiro,et al.  Conformal Surface Parameterization for Texture Mapping , 1999 .

[22]  Robert D. Russell,et al.  Adaptivity with moving grids , 2009, Acta Numerica.

[23]  A. Dvinsky Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .

[24]  Charles M. Elliott,et al.  On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick , 2016, 1602.07143.

[25]  B. Chow,et al.  Hamilton's Ricci Flow , 2018 .

[26]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[27]  A. Schmidt,et al.  Design of Adaptive Finite Element Software , 2005 .

[28]  Jürgen Jost,et al.  Ein Existenzbeweis für harmonische Abbildungen, die ein Dirichletproblem lösen, mittels der Methode des Wärmeflusses , 1981 .

[29]  John A. Mackenzie,et al.  A computational method for the coupled solution of reaction–diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis , 2016, J. Comput. Phys..

[30]  Weizhang Huang Practical aspects of formulation and solution of moving mesh partial differential equations , 2001 .