Implicit Renewal Theory and Power Tails on Trees

We extend Goldie's (1991) implicit renewal theorem to enable the analysis of recursions on weighted branching trees. We illustrate the developed method by deriving the power-tail asymptotics of the distributions of the solutions R to and similar recursions, where (Q, N, C 1, C 2,…) is a nonnegative random vector with N ∈ {0, 1, 2, 3,…} ∪ {∞}, and are independent and identically distributed copies of R, independent of (Q, N, C 1, C 2,…); here ‘∨’ denotes the maximum operator.

[1]  A. Brandt The stochastic equation Yn+1=AnYn+Bn with stationary coefficients , 1986 .

[2]  C. Goldie IMPLICIT RENEWAL THEORY AND TAILS OF SOLUTIONS OF RANDOM EQUATIONS , 1991 .

[3]  Andreas E. Kyprianou,et al.  SENETA-HEYDE NORMING IN THE BRANCHING RANDOM WALK , 1997 .

[4]  Svante Janson,et al.  Approximating the limiting Quicksort distribution , 2001, Random Struct. Algorithms.

[5]  Gerold Alsmeyer,et al.  Fixed points of inhomogeneous smoothing transforms , 2010, 1007.4509.

[6]  H. Kesten Random difference equations and Renewal theory for products of random matrices , 1973 .

[7]  Predrag R. Jelenkovic,et al.  Information ranking and power laws on trees , 2009, Advances in Applied Probability.

[8]  J. Norris Appendix: probability and measure , 1997 .

[9]  J. Biggins,et al.  Martingale convergence in the branching random walk , 1977, Journal of Applied Probability.

[10]  Quansheng Liu,et al.  On generalized multiplicative cascades , 2000 .

[11]  L. Rüschendorf,et al.  A general limit theorem for recursive algorithms and combinatorial structures , 2004 .

[12]  D. Aldous,et al.  A survey of max-type recursive distributional equations , 2004, math/0401388.

[13]  Gerold Alsmeyer,et al.  A stochastic fixed point equation related to weighted branching with deterministic weights. , 2006 .

[14]  A. Grincevičius,et al.  One limit distribution for a random walk on the line , 1975 .

[15]  Uwe Rr Osler The Weighted Branching Process , 1999 .

[16]  R. Durrett,et al.  Fixed points of the smoothing transformation , 1983 .

[17]  Gerold Alsmeyer,et al.  A stochastic fixed point equation for weighted minima and maxima , 2008 .

[18]  N. Litvak,et al.  Asymptotic analysis for personalized Web search , 2010, Advances in Applied Probability.

[19]  P. Ney,et al.  Limit Theorems for Semi-Markov Processes and Renewal Theory for Markov Chains , 1978 .

[20]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[21]  Gerold Alsmeyer,et al.  Double martingale structure and existence of -moments for weighted branching processes , 2009 .

[22]  Aleksander M. Iksanov Elementary fixed points of the BRW smoothing transforms with infinite number of summands , 2003 .

[23]  P. Jagers,et al.  Stochastic fixed points involving the maximum , 2004 .

[24]  Quansheng Liu Fixed points of a generalized smoothing transformation and applications to the branching random walk , 1998, Advances in Applied Probability.

[25]  Uwe Rr Osler The Contraction Method for Recursive Algorithms , 1999 .

[26]  P. Jagers,et al.  Stochastic fixed points for the maximum , 2004 .

[27]  Thomas M. Liggett,et al.  Generalized potlatch and smoothing processes , 1981 .

[28]  Gerold Alsmeyer,et al.  The functional equation of the smoothing transform , 2009, 0906.3133.

[29]  M. Meerschaert Regular Variation in R k , 1988 .