Positivity and Conservation Properties of Some Integration Schemes for Mass Action Kinetics

The numerical schemes approximating chemical reactions according to the mass action law should reproduce at least two properties of the corresponding physical system: mass conservation and nonnegativity of the concentrations. This paper analyzes the equations of mass action kinetics providing a proof of the existence, uniqueness, and positivity of the solution under mild hypotheses on the reaction rate and the stoichiometric coefficients. We then consider some classic integration schemes in terms of conservation, positivity, and accuracy compared to schemes tailored for production-destruction systems, and propose an original scheme which guarantees conservation and nonnegativity of the solution and has order of convergence between 2 and 3.

[1]  Enrico Bertolazzi,et al.  Positive and conservative schemes for mass action kinetics , 1996 .

[2]  A. Bellen,et al.  Unconditional Contractivity in the Maximum Norm of Diagonally Split Runge--Kutta Methods , 1997 .

[3]  P. Atkins,et al.  THE STRUCTURE OF PHYSICAL CHEMISTRY , 2002 .

[4]  Adrian Sandu Positive numerical integration methods for chemical kinetic systems , 2001 .

[5]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[6]  高等学校計算数学学報編輯委員会編,et al.  高等学校計算数学学報 = Numerical mathematics , 1979 .

[7]  A. McNaught,et al.  Compendium of chemical terminology. IUPAC recommendations , 1997 .

[8]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[9]  C. W. Gear,et al.  Multirate linear multistep methods , 1984 .

[10]  Peter Deuflhard,et al.  Scientific Computing with Ordinary Differential Equations , 2002 .

[11]  Willem Hundsdorfer,et al.  Analysis of a multirate theta-method for stiff ODEs , 2009 .

[12]  Bob W. Kooi,et al.  A second-order, unconditionally positive, mass-conserving integration scheme for biochemical systems , 2006 .

[13]  Aristide Halanay,et al.  Applications of Liapunov methods in stability , 1993 .

[14]  W. Hundsdorfer,et al.  Positivity for explicit two-step methods in linear multistep and one-leg form , 2006 .

[15]  Adrian Sandu,et al.  Time-stepping methods that favor positivity for atmospheric chemistry modeling , 2002 .

[16]  Z. Horváth,et al.  On the positivity step size threshold of Runge-Kutta methods , 2005 .

[17]  C. Bolley,et al.  Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques , 1978 .

[18]  Z. Horváth,et al.  Positivity of Runge-Kutta and diagonally split Runge-Kutta methods , 1998 .

[19]  R. Mickens Nonstandard Finite Difference Models of Differential Equations , 1993 .

[20]  Eric Deleersnijder,et al.  A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations , 2003 .

[21]  Ronald E. Mickens,et al.  Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition , 2007 .

[22]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[23]  Andreas Meister,et al.  An improved and generalized second order, unconditionally positive, mass conserving integration scheme for biochemical systems , 2008 .

[24]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .