The influence of molecular orientation on organic bulk heterojunction solar cells

X-ray scattering experiments indicate that the molecular orientation at the interfaces of bulk heterojunction organic solar cells influences the cells’ fill factor and short-circuit current.

[1]  Edward H. Sargent,et al.  Materials interface engineering for solution-processed photovoltaics , 2012, Nature.

[2]  S. Mannsfeld,et al.  Quantitative determination of organic semiconductor microstructure from the molecular to device scale. , 2012, Chemical reviews.

[3]  Gang Li,et al.  Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells , 2009 .

[4]  Adam P. Willard,et al.  Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. , 2013, Nature materials.

[5]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[6]  Luping Yu,et al.  When Function Follows Form: Effects of Donor Copolymer Side Chains on Film Morphology and BHJ Solar Cell Performance , 2010, Advanced materials.

[7]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[8]  David Beljonne,et al.  Electronic Structure and Geminate Pair Energetics at Organic–Organic Interfaces: The Case of Pentacene/C60 Heterojunctions , 2009 .

[9]  Niyazi Serdar Sariciftci,et al.  Morphology of polymer/fullerene bulk heterojunction solar cells , 2006 .

[10]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[11]  Christoph J. Brabec,et al.  Influence of Blend Microstructure on Bulk Heterojunction Organic Photovoltaic Performance , 2011 .

[12]  Chris Groves,et al.  The relative importance of domain size, domain purity and domain interfaces to the performance of bulk-heterojunction organic photovoltaics , 2012 .

[13]  R. Friend,et al.  Ultrafast Long-Range Charge Separation in Organic Semiconductor Photovoltaic Diodes , 2014, Science.

[14]  R. Hamilton,et al.  Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices , 2010, Proceedings of the National Academy of Sciences.

[15]  Wei You,et al.  Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % efficiency. , 2011, Angewandte Chemie.

[16]  Jan Genoe,et al.  The Impact of Molecular Orientation on the Photovoltaic Properties of a Phthalocyanine/Fullerene Heterojunction , 2012 .

[17]  N. Koch,et al.  Fluorinated copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells. , 2012, Journal of the American Chemical Society.

[18]  John R. Tumbleston,et al.  Domain Purity, Miscibility, and Molecular Orientation at Donor/Acceptor Interfaces in High Performance Organic Solar Cells: Paths to Further Improvement , 2013 .

[19]  David Beljonne,et al.  Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices† , 2011 .

[20]  John R. Tumbleston,et al.  Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC71BM Solar Cells , 2013 .

[21]  M. Toney,et al.  Highly oriented crystals at the buried interface in polythiophene thin-film transistors , 2006 .

[22]  Florian S. U. Fischer,et al.  On the Efficiency of Charge Transfer State Splitting in Polymer:Fullerene Solar Cells , 2014, Advanced materials.

[23]  N. Stribeck X-Ray Scattering of Soft Matter , 2007 .

[24]  B. Collins,et al.  Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. , 2012, Nature materials.

[25]  Wei Chen,et al.  Molecular Orientation Dependent Energy Level Alignment at Organic−Organic Heterojunction Interfaces , 2009 .

[26]  E. Anderson,et al.  Interferometer-controlled scanning transmission X-ray microscopes at the Advanced Light Source. , 2003, Journal of synchrotron radiation.

[27]  David Beljonne,et al.  Electronic Structure and Geminate Pair Energetics at Organic–Organic Interfaces: The Case of Pentacene/C60 Heterojunctions , 2009 .

[28]  Alberto Salleo,et al.  Microstructural Characterization and Charge Transport in Thin Films of Conjugated Polymers , 2010, Advanced materials.

[29]  P. Erk,et al.  Merocyanine/C60 Planar Heterojunction Solar Cells: Effect of Dye Orientation on Exciton Dissociation and Solar Cell Performance , 2012 .

[30]  A. Hexemer,et al.  Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis. , 2012, The Review of scientific instruments.

[31]  Wei You,et al.  Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. , 2011, Journal of the American Chemical Society.

[32]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[33]  John R. Tumbleston,et al.  Disentangling the impact of side chains and fluorine substituents of conjugated donor polymers on the performance of photovoltaic blends , 2013 .

[34]  Howard A. Padmore,et al.  A SAXS/WAXS/GISAXS Beamline with Multilayer Monochromator , 2010 .

[35]  M. Chabinyc X‐ray Scattering from Films of Semiconducting Polymers , 2008 .

[36]  Aram Amassian,et al.  Efficient charge generation by relaxed charge-transfer states at organic interfaces. , 2014, Nature materials.