Public Data Release of the FIRE-2 Cosmological Zoom-in Simulations of Galaxy Formation

We describe a public data release of the FIRE-2 cosmological zoom-in simulations of galaxy formation (available at http://flathub.flatironinstitute.org/fire) from the Feedback In Realistic Environments (FIRE) project. FIRE-2 simulations achieve parsec-scale resolution to explicitly model the multiphase interstellar medium while implementing direct models for stellar evolution and feedback, including stellar winds, core-collapse and Type Ia supernovae, radiation pressure, photoionization, and photoelectric heating. We release complete snapshots from three suites of simulations. The first comprises 20 simulations that zoom in on 14 Milky Way (MW)–mass galaxies, five SMC/LMC-mass galaxies, and four lower-mass galaxies including one ultrafaint; we release 39 snapshots across z = 0–10. The second comprises four massive galaxies, with 19 snapshots across z = 1–10. Finally, a high-redshift suite comprises 22 simulations, with 11 snapshots across z = 5–10. Each simulation also includes dozens of resolved lower-mass (satellite) galaxies in its zoom-in region. Snapshots include all stored properties for all dark matter, gas, and star particles, including 11 elemental abundances for stars and gas, and formation times (ages) of star particles. We also release accompanying (sub)halo catalogs, which include galaxy properties and member star particles. For the simulations to z = 0, including all MW-mass galaxies, we release the formation coordinates and an “ex situ” flag for all star particles, pointers to track particles across snapshots, catalogs of stellar streams, and multipole basis expansions for the halo mass distributions. We describe publicly available python packages for reading and analyzing these simulations.

[1]  P. Hopkins,et al.  Exploring supermassive black hole physics and galaxy quenching across halo mass in FIRE cosmological zoom simulations , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  A. Wetzel,et al.  On the Stability of Tidal Streams in Action Space , 2022, The Astrophysical Journal.

[3]  A. Wetzel,et al.  Baryonic solutions and challenges for cosmological models of dwarf galaxies , 2022, Nature Astronomy.

[4]  V. Belokurov,et al.  From dawn till disk: Milky Way’s turbulent youth revealed by the APOGEE+Gaia data , 2022, Monthly Notices of the Royal Astronomical Society.

[5]  J. Bailin,et al.  3D elemental abundances of stars at formation across the histories of Milky Way-mass galaxies in the FIRE simulations , 2022, Monthly Notices of the Royal Astronomical Society.

[6]  P. Hopkins,et al.  FIRE-3: Updated stellar evolution models, yields, & microphysics and fitting functions for applications in galaxy simulations , 2022, Monthly Notices of the Royal Astronomical Society.

[7]  P. Hopkins,et al.  Exploring metallicity-dependent rates of Type Ia supernovae and their impact on galaxy formation , 2022, Monthly Notices of the Royal Astronomical Society.

[8]  K. Sandstrom,et al.  The galactic dust-up: Modeling dust evolution in FIRE , 2022, Monthly Notices of the Royal Astronomical Society.

[9]  Pablo Vera Alfaro,et al.  THE SEVENTEENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEYS: COMPLETE RELEASE OF MANGA, MASTAR AND APOGEE-2 DATA , 2022 .

[10]  P. Hopkins,et al.  The impact of cosmic rays on dynamical balance and disk-halo interaction in L⋆ disk galaxies , 2021, Monthly Notices of the Royal Astronomical Society.

[11]  P. Hopkins,et al.  The In Situ Origins of Dwarf Stellar Outskirts in FIRE-2 , 2021, The Astrophysical Journal.

[12]  C. Scarlata,et al.  Testing the Relationship between Bursty Star Formation and Size Fluctuations of Local Dwarf Galaxies , 2021, The Astrophysical Journal.

[13]  J. Bailin,et al.  The Galaxy Progenitors of Stellar Streams around Milky Way–mass Galaxies in the FIRE Cosmological Simulations , 2021, The Astrophysical Journal.

[14]  Vijith Jacob Poovelil,et al.  New Families in our Solar Neighborhood: Applying Gaussian Mixture Models for Objective Classification of Structures in the Milky Way and in Simulations , 2021, The Astrophysical Journal.

[15]  P. Hopkins,et al.  Characterizing mass, momentum, energy and metal outflow rates of multi-phase galactic winds in the FIRE-2 cosmological simulations , 2021, Monthly Notices of the Royal Astronomical Society.

[16]  P. Hopkins,et al.  The bursty origin of the Milky Way thick disc , 2021, Monthly Notices of the Royal Astronomical Society.

[17]  R. Feldmann,et al.  3D gas-phase elemental abundances across the formation histories of Milky Way-mass galaxies in the FIRE simulations: initial conditions for chemical tagging , 2021, Monthly Notices of the Royal Astronomical Society.

[18]  V. Belokurov,et al.  Can cosmological simulations capture the diverse satellite populations of observed Milky Way analogues? , 2020, Monthly Notices of the Royal Astronomical Society.

[19]  P. Hopkins,et al.  Progenitor-mass-dependent yields amplify intrinsic scatter in dwarf-galaxy elemental abundance ratios , 2020, Monthly Notices of the Royal Astronomical Society.

[20]  P. Hopkins,et al.  Virialization of the Inner CGM in the FIRE Simulations and Implications for Galaxy Disks, Star Formation, and Feedback , 2020, The Astrophysical Journal.

[21]  D. Feuillet,et al.  VINTERGATAN – I. The origins of chemically, kinematically, and structurally distinct discs in a simulated Milky Way-mass galaxy , 2020, Monthly Notices of the Royal Astronomical Society.

[22]  R. Feldmann,et al.  Realistic mock observations of the sizes and stellar mass surface densities of massive galaxies in FIRE-2 zoom-in simulations , 2020, Monthly notices of the Royal Astronomical Society.

[23]  P. Hopkins,et al.  Cosmological Simulations of Quasar Fueling to Subparsec Scales Using Lagrangian Hyper-refinement , 2020, 2008.12303.

[24]  T. Quinn,et al.  Ultrafaint Dwarfs in a Milky Way Context: Introducing the Mint Condition DC Justice League Simulations , 2020, 2008.11207.

[25]  J. Bullock,et al.  The time-scales probed by star formation rate indicators for realistic, bursty star formation histories from the FIRE simulations , 2020, Monthly Notices of the Royal Astronomical Society.

[26]  M. Steinmetz,et al.  The hestia project: simulations of the Local Group , 2020, Monthly Notices of the Royal Astronomical Society.

[27]  A. J. Richings,et al.  Pressure balance in the multiphase ISM of cosmologically simulated disc galaxies , 2020, Monthly Notices of the Royal Astronomical Society.

[28]  P. Hopkins,et al.  A dark matter profile to model diverse feedback-induced core sizes of ΛCDM haloes , 2020, Monthly Notices of the Royal Astronomical Society.

[29]  P. Hopkins,et al.  No missing photons for reionization: moderate ionizing photon escape fractions from the FIRE-2 simulations , 2020, Monthly Notices of the Royal Astronomical Society.

[30]  P. Hopkins,et al.  Testing physical models for cosmic ray transport coefficients on galactic scales: self-confinement and extrinsic turbulence at ∼GeV energies , 2020, Monthly Notices of the Royal Astronomical Society.

[31]  Andrew Wetzel,et al.  GizmoAnalysis: Read and analyze Gizmo simulations , 2020 .

[32]  Andrew Wetzel,et al.  HaloAnalysis: Read and analyze halo catalogs and merger trees , 2020 .

[33]  J. Bailin,et al.  The formation times and building blocks of Milky Way-mass galaxies in the FIRE simulations , 2020, Monthly Notices of the Royal Astronomical Society.

[34]  P. Hopkins,et al.  Live fast, die young: GMC lifetimes in the FIRE cosmological simulations of Milky Way mass galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[35]  P. Hopkins,et al.  Swirls of FIRE: spatially resolved gas velocity dispersions and star formation rates in FIRE-2 disc environments , 2019, Monthly Notices of the Royal Astronomical Society.

[36]  A. Wetzel,et al.  The fates of the circumgalactic medium in the FIRE simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[37]  M. Vogelsberger,et al.  Cosmological simulations of galaxy formation , 2019, Nature Reviews Physics.

[38]  P. Hopkins,et al.  Measuring dynamical masses from gas kinematics in simulated high-redshift galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[39]  P. Hopkins,et al.  Self-consistent proto-globular cluster formation in cosmological simulations of high-redshift galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[40]  C. Faucher-Giguère A cosmic UV/X-ray background model update , 2019, Monthly Notices of the Royal Astronomical Society.

[41]  Sarah Loebman,et al.  Synthetic Gaia DR3 surveys from the FIRE cosmological simulations of Milky-Way-mass galaxies , 2023, 2306.16475.

[42]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[43]  S. Loebman,et al.  Evolution of giant molecular clouds across cosmic time , 2019, Monthly Notices of the Royal Astronomical Society.

[44]  J. Read,et al.  EDGE: The Origin of Scatter in Ultra-faint Dwarf Stellar Masses and Surface Brightnesses , 2019, The Astrophysical Journal.

[45]  P. Hopkins,et al.  Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes , 2019, Monthly Notices of the Royal Astronomical Society.

[46]  P. Hopkins,et al.  Predictions for the spatial distribution of the dust continuum emission in $\boldsymbol {1\,\lt\, z\,\lt\, 5}$ star-forming galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[47]  P. Hopkins,et al.  But what about...: cosmic rays, magnetic fields, conduction, and viscosity in galaxy formation , 2019, Monthly Notices of the Royal Astronomical Society.

[48]  J. Bailin,et al.  A profile in FIRE: resolving the radial distributions of satellite galaxies in the Local Group with simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[49]  P. Hopkins,et al.  Star formation histories of dwarf galaxies in the FIRE simulations: dependence on mass and Local Group environment , 2019, Monthly Notices of the Royal Astronomical Society.

[50]  P. Hopkins,et al.  Dust attenuation, dust emission, and dust temperature in galaxies at z ≥ 5: a view from the FIRE-2 simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[51]  D. Narayanan,et al.  simba: Cosmological simulations with black hole growth and feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[52]  P. Hopkins,et al.  Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV γ-ray emission , 2018, Monthly Notices of the Royal Astronomical Society.

[53]  Annalisa Pillepich,et al.  The IllustrisTNG simulations: public data release , 2018, Computational Astrophysics and Cosmology.

[54]  A. Dutton,et al.  An observational test for star formation prescriptions in cosmological hydrodynamical simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[55]  P. Hopkins,et al.  Be it therefore resolved: cosmological simulations of dwarf galaxies with 30 solar mass resolution , 2018, Monthly Notices of the Royal Astronomical Society.

[56]  P. Hopkins,et al.  Radiative stellar feedback in galaxy formation: Methods and physics , 2018, Monthly Notices of the Royal Astronomical Society.

[57]  P. Hopkins,et al.  The origins of the circumgalactic medium in the FIRE simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[58]  P. Hopkins,et al.  Under the FIRElight: Stellar Tracers of the Local Dark Matter Velocity Distribution in the Milky Way , 2018, The Astrophysical Journal.

[59]  Molly S. Peeples,et al.  Figuring Out Gas & Galaxies in Enzo (FOGGIE). I. Resolving Simulated Circumgalactic Absorption at 2 ≤ z ≤ 2.5 , 2018, The Astrophysical Journal.

[60]  Benjamin D. Johnson,et al.  A Closer Look at Bursty Star Formation with LHα and LUV Distributions , 2018, The Astrophysical Journal.

[61]  Andrew P. Hearin,et al.  UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.

[62]  P. Hopkins,et al.  The Local Group on FIRE: dwarf galaxy populations across a suite of hydrodynamic simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[63]  A. Babul,et al.  Introducingromulusc: a cosmological simulation of a galaxy cluster with an unprecedented resolution , 2018, Monthly Notices of the Royal Astronomical Society.

[64]  P. Jablonka,et al.  Pushing back the limits: detailed properties of dwarf galaxies in a ΛCDM universe , 2018, Astronomy & Astrophysics.

[65]  P. Hopkins,et al.  Gas kinematics in FIRE simulated galaxies compared to spatially unresolved HI observations. , 2018, Monthly notices of the Royal Astronomical Society.

[66]  P. Hopkins,et al.  Predicting the binary black hole population of the Milky Way with cosmological simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[67]  P. Hopkins,et al.  Reconciling Observed and Simulated Stellar Halo Masses , 2017, The Astrophysical Journal.

[68]  P. Hopkins,et al.  The origin of the diverse morphologies and kinematics of Milky Way-mass galaxies in the FIRE-2 simulations. , 2017, Monthly notices of the Royal Astronomical Society.

[69]  P. Hopkins,et al.  Discrete effects in stellar feedback: Individual Supernovae, Hypernovae, and IMF Sampling in Dwarf Galaxies. , 2017, Monthly notices of the Royal Astronomical Society.

[70]  P. Hopkins,et al.  The origin of ultra diffuse galaxies: stellar feedback and quenching. , 2017, Monthly notices of the Royal Astronomical Society.

[71]  P. Hopkins,et al.  Modelling chemical abundance distributions for dwarf galaxies in the Local Group: The impact of turbulent metal diffusion , 2017, 1710.06533.

[72]  P. Hopkins,et al.  Gas kinematics, morphology and angular momentum in the FIRE simulations , 2017, 1705.10321.

[73]  Paul Torrey,et al.  FIRE-2 simulations: physics versus numerics in galaxy formation , 2017, Monthly Notices of the Royal Astronomical Society.

[74]  P. Hopkins,et al.  Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes , 2017, 1710.00008.

[75]  P. Hopkins,et al.  How to model supernovae in simulations of star and galaxy formation , 2017, 1707.07010.

[76]  Carnegie,et al.  Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei , 2017, 1707.03832.

[77]  Berkeley,et al.  Simulating galaxies in the reionization era with FIRE-2: galaxy scaling relations, stellar mass functions, and luminosity functions , 2017, 1706.06605.

[78]  T. Quinn,et al.  Going, going, gone dark: Quantifying the scatter in the faintest dwarf galaxies , 2017, 1705.06286.

[79]  P. Hopkins,et al.  Gaia Reveals a Metal-rich, in situ Component of the Local Stellar Halo , 2017, 1704.05463.

[80]  S. White,et al.  The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies , 2017, 1703.10907.

[81]  S. White,et al.  The Hydrangea simulations: galaxy formation in and around massive clusters , 2017, 1703.10610.

[82]  R. Klessen,et al.  Introducing the FirstLight project: UV luminosity function and scaling relations of primeval galaxies , 2017, 1703.02913.

[83]  V. Bromm,et al.  Connecting the First Galaxies with Ultrafaint Dwarfs in the Local Group: Chemical Signatures of Population III Stars , 2017, 1702.07355.

[84]  P. Hopkins,et al.  Not so lumpy after all: modelling the depletion of dark matter subhaloes by Milky Way-like galaxies , 2017, 1701.03792.

[85]  Oliver D. Elbert,et al.  FIRE in the field: Simulating the threshold of galaxy formation , 2016, 1611.02281.

[86]  P. Hopkins,et al.  Colours, star formation rates and environments of star-forming and quiescent galaxies at the cosmic noon , 2016, 1610.02411.

[87]  P. Hopkins,et al.  Feedback first: the surprisingly weak effects of magnetic fields, viscosity, conduction and metal diffusion on sub-L* galaxy formation , 2016, 1607.05274.

[88]  Caltech,et al.  Gravitational torque-driven black hole growth and feedback in cosmological simulations , 2016, 1603.08007.

[89]  P. Hopkins Anisotropic Diffusion in Mesh-Free Numerical Magnetohydrodynamics , 2016, 1602.07703.

[90]  Devin Silvia,et al.  Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations , 2016, 1612.03935.

[91]  P. Hopkins,et al.  When the Jeans Do Not Fit: How Stellar Feedback Drives Stellar Kinematics and Complicates Dynamical Modeling in Low-mass Galaxies , 2016, 1610.04232.

[92]  E. Hallman,et al.  pyXSIM: Synthetic X-ray observations generator , 2016 .

[93]  B. O’Shea,et al.  GALAXY PROPERTIES AND UV ESCAPE FRACTIONS DURING THE EPOCH OF REIONIZATION: RESULTS FROM THE RENAISSANCE SIMULATIONS , 2016, 1604.07842.

[94]  Joss Bland-Hawthorn,et al.  The Galaxy in Context: Structural, Kinematic, and Integrated Properties , 2016, 1602.07702.

[95]  P. Hopkins,et al.  The formation of massive, quiescent galaxies at cosmic noon , 2016, 1601.04704.

[96]  Caltech,et al.  The no-spin zone: rotation versus dispersion support in observed and simulated dwarf galaxies , 2015, Monthly Notices of the Royal Astronomical Society.

[97]  Liverpool John Moores University,et al.  The APOSTLE simulations: solutions to the Local Group's cosmic puzzles , 2015, 1511.01098.

[98]  Carlos S. Frenk,et al.  The eagle simulations of galaxy formation: Public release of halo and galaxy catalogues , 2015, Astron. Comput..

[99]  Gregory F. Snyder,et al.  The illustris simulation: Public data release , 2015, Astron. Comput..

[100]  G. Stinson,et al.  NIHAO project – I. Reproducing the inefficiency of galaxy formation across cosmic time with a large sample of cosmological hydrodynamical simulations , 2015, 1503.04818.

[101]  R. Teyssier,et al.  Rhapsody-G simulations: galaxy clusters as baryonic closed boxes and the covariance between hot gas and galaxies , 2015, Monthly Notices of the Royal Astronomical Society.

[102]  P. Hopkins A new class of accurate, mesh-free hydrodynamic simulation methods , 2014, 1409.7395.

[103]  P. Hopkins,et al.  Galactic r-process enrichment by neutron star mergers in cosmological simulations of a Milky Way-mass galaxy , 2014, 1407.7039.

[104]  C. Leitherer,et al.  THE EFFECTS OF STELLAR ROTATION. II. A COMPREHENSIVE SET OF STARBURST99 MODELS , 2014, 1403.5444.

[105]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[106]  J. Bullock,et al.  How to zoom: bias, contamination and Lagrange volumes in multimass cosmological simulations , 2013, 1305.6923.

[107]  P. Hopkins,et al.  The meaning and consequences of star formation criteria in galaxy models with resolved stellar feedback , 2013, 1303.0285.

[108]  A. Szalay,et al.  THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT , 2013 .

[109]  Oliver Hahn,et al.  Multi-scale initial conditions for cosmological simulations , 2011, 1103.6031.

[110]  P. Hopkins,et al.  Self-regulated star formation in galaxies via momentum input from massive stars , 2011, 1101.4940.

[111]  M. Norman,et al.  yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.

[112]  A. Knebe,et al.  Ahf: AMIGA'S HALO FINDER , 2009, 0904.3662.

[113]  K. Nomoto,et al.  Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution , 2006, astro-ph/0605725.

[114]  F. Mannucci,et al.  Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.

[115]  Risa H. Wechsler,et al.  The shape of dark matter haloes : dependence on mass, redshift, radius and formation , 2005, astro-ph/0508497.

[116]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[117]  R. Izzard,et al.  A new synthetic model for asymptotic giant branch stars , 2004 .

[118]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[119]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[120]  P. Marigo Chemical Yields from Low- and Intermediate-Mass Stars , 1999, astro-ph/0012181.

[121]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[122]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[123]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[124]  M. Groenewegen,et al.  New theoretical yields of intermediate mass stars , 1996, astro-ph/9610030.

[125]  Simon D. M. White,et al.  Hierarchical galaxy formation : overmerging and the formation of an X-ray cluster , 1993 .

[126]  Phillip James Edwin Peebles,et al.  Origin of the Angular Momentum of Galaxies , 1969 .