Estimation of vapour liquid equilibria for the system carbon dioxide–difluoromethane using artificial neural networks

Abstract In this paper, an alternate tool, i.e. the artificial neural network technique has been applied for estimation of vapour liquid equilibria (VLE) for the binary system, carbon dioxide–difluoromethane, which is an attractive alternative to chlorofluorocarbons and hydrochlorofluorocarbons, normally used as refrigerants. The model can satisfactorily estimate the vapour liquid equilibrium pressure and mole fraction carbon dioxide in vapour phase in the temperature range 222.04–343.23 K and in the pressure range 0.105–7.46 MPa. The average absolute error for the system in the estimation of vapour phase mole fraction is 0.0086 and 0.056 MPa for the pressure.

[1]  Akira Takada,et al.  Prediction of vapor–liquid equilibrium for binary systems containing HFEs by using artificial neural network , 2002 .

[2]  L. Piazza,et al.  Application of Neural Networks to a Predictive Extended Corresponding States Model for Pure Halocarbon Thermodynamics , 2002 .

[3]  Anthony S. Wexler,et al.  Predicting vapor pressures using neural networks , 1997 .

[4]  Somenath Ganguly,et al.  Prediction of VLE data using radial basis function network , 2003, Comput. Chem. Eng..

[5]  F. Polonara,et al.  Isochoric Measurements for CO 2 + R125 and CO 2 + R32 Binary Systems , 2002 .

[6]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[7]  Dominique Richon,et al.  An equation of state for R227ea from density data through a new extended corresponding states-neural network technique , 2002 .

[8]  Ashish Dwivedi,et al.  Potential applications of artificial neural networks to thermodynamics: vapor–liquid equilibrium predictions , 1999 .

[9]  Dominique Richon,et al.  Use of artificial neural networks for calculating derived thermodynamic quantities from volumetric property data , 2003 .

[10]  D. Richon,et al.  Modeling of thermodynamic properties using neural networks: Application to refrigerants , 2002 .

[11]  E. Clothiaux,et al.  Neural Networks and Their Applications , 1994 .

[12]  D. Richon,et al.  Vapor–liquid equilibrium data for the carbon dioxide (CO2) + difluoromethane (R32) system at temperatures from 283.12 to 343.25 K and pressures up to 7.46 MPa , 2004 .

[13]  Aage Fredenslund,et al.  Artificial neural networks as a predictive tool for vapor-liquid equilibrium , 1994 .