Role of the color-opponent and broad-band channels in vision

The functions of the primate color-opponent and broad-band channels were assessed by examining the visual capacities of rhesus monkeys following selective lesions of parvocellular and magnocellular lateral geniculate nucleus, which respectively relay these two channels to the cortex. Parvocellular lesions impaired color vision, high spatial-frequency form vision, and fine stereopsis. Magnocellular lesions impaired high temporal-frequency flicker and motion perception but produced no deficits in stereopsis. Low spatial-frequency form vision, stereopsis, and brightness perception were unaffected by either lesion. Much as the rods and cones of the retina can be thought of as extending the range of vision in the intensity domain, we propose that the color-opponent channel extends visual capacities in the wavelength and spatial-frequency domains whereas the broad-band channel extends them in the temporal domain.

[1]  H. K. Hartline,et al.  THE RESPONSE OF SINGLE OPTIC NERVE FIBERS OF THE VERTEBRATE EYE TO ILLUMINATION OF THE RETINA , 1938 .

[2]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[3]  D. Robinson,et al.  A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD. , 1963, IEEE transactions on bio-medical engineering.

[4]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[5]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[6]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[7]  R. L. Valois,et al.  Primate color vision. , 1968, Science.

[8]  P Gouras,et al.  Antidromic responses of orthodromically identified ganglion cells in monkey retina , 1969, The Journal of physiology.

[9]  J. Malpeli,et al.  The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta , 1975, The Journal of comparative neurology.

[10]  P. Gouras,et al.  Functional properties of ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[11]  R. W. Rodieck,et al.  Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. , 1976, The Journal of physiology.

[12]  M. P. Friedman,et al.  HANDBOOK OF PERCEPTION , 1977 .

[13]  P. Schiller,et al.  Properties and tectal projections of monkey retinal ganglion cells. , 1977, Journal of neurophysiology.

[14]  R H Wurtz,et al.  Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. , 1977, Journal of neurophysiology.

[15]  F. M. D. Monasterio Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques. , 1978 .

[16]  P. Schiller,et al.  Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. , 1978, Journal of neurophysiology.

[17]  F. M. D. Monasterio Properties of concentrically organized X and Y ganglion cells of macaque retina. , 1978 .

[18]  P. Schiller,et al.  Composition of geniculostriate input ot superior colliculus of the rhesus monkey. , 1979, Journal of neurophysiology.

[19]  P. Lennie Parallel visual pathways: A review , 1980, Vision Research.

[20]  W. Fries The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  R. Shapley,et al.  Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque , 1981, Nature.

[22]  R. W. Rodieck,et al.  Retinal ganglion cell classes in the Old World monkey: morphology and central projections. , 1981, Science.

[23]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[24]  Carol L. Colby,et al.  The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast , 1983, Vision Research.

[25]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[26]  A. Cowey,et al.  Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey , 1984, Neuroscience.

[27]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  D. V. van Essen,et al.  The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey , 1984, The Journal of comparative neurology.

[29]  S. Sherman Functional organization of the W-, X-, and Y- cell pathways in the cat: A review and hypothesis , 1985 .

[30]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[31]  Leslie G. Ungerleider,et al.  Contour, color and shape analysis beyond the striate cortex , 1985, Vision Research.

[32]  A. Cowey,et al.  The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors , 1985, Vision Research.

[33]  P. H. Schiller The central visual system , 1986, Vision Research.

[34]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[35]  Khanh Nguyen,et al.  Use of a raster framebuffer in vision research , 1986 .

[36]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[38]  R. Shapley,et al.  Background light and the contrast gain of primate P and M retinal ganglion cells. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Kevan A. C. Martin,et al.  From enzymes to visual perception: a bridge too far? , 1988, Trends in Neurosciences.

[40]  R. Wurtz,et al.  Probing visual cortical function with discrete chemical lesions , 1988, Trends in Neurosciences.

[41]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[42]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[43]  WH Merigan,et al.  Chromatic and achromatic vision of macaques: role of the P pathway , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  B. Boycott,et al.  Horizontal Cells in the Monkey Retina: Cone connections and dendritic network , 1989, The European journal of neuroscience.

[45]  N. Logothetis,et al.  Perceptual deficits and the activity of the color-opponent and broad-band pathways at isoluminance. , 1990, Science.

[46]  Scott S. Grigsby,et al.  Perceptual correlates of magnocellular and parvocellular channels: Seeing form and depth in afterimages , 1990, Vision Research.

[47]  N. Logothetis,et al.  Functions of the colour-opponent and broad-band channels of the visual system , 1990, Nature.