Natural speciation of Mn, Ni and Zn at a micrometer scale in aclayey paddy soil using X-ray fluorescence, absorption anddiffraction

A temperature distribution measuring device has a turnable sensor head section 1 in which a plurality of detecting sections are arranged, a shaft 2 to which the sensor head section 1 is mounted so that the array direction of the detecting sections is inclined to the axis of rotation thereof, a rotation driving motor for rotating the shaft 2, control circuit 8 for controlling the direction and speed of rotation of the rotation driving section 3, and an umbrella-shaped chopping member for intermittently blocking incident infrared beams. The device has high spatial resolution and can offer temperature resolution at low cost.

[1]  R. Korotev,et al.  The 'North American shale composite' - Its compilation, major and trace element characteristics , 1984 .

[2]  N. Tamura,et al.  Deciphering Ni sequestration in soil ferromanganese nodules by combining X-ray fluorescence, absorption, and diffraction at micrometer scales of resolution , 2002 .

[3]  T. Ressler WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. , 1998, Journal of synchrotron radiation.

[4]  J. Hazemann,et al.  QUANTITATIVE ZN SPECIATION IN SMELTER-CONTAMINATED SOILS BY EXAFS SPECTROSCOPY , 2000 .

[5]  R. Southard,et al.  Subsoil Blocky Structure Formation in Some North Carolina Paleudults and Paleaquults , 1988 .

[6]  R. Taylor,et al.  THE ASSOCIATION OF MANGANESE AND COBALT IN SOILS—FURTHER OBSERVATIONS , 1968 .

[7]  M. Schlegel,et al.  Texture effect on polarized EXAFS amplitude , 2001 .

[8]  Valérie Bert,et al.  The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, x-ray fluorescence, EXAFS spectroscopy, and principal components analysis , 2005 .

[9]  M. Benedetti,et al.  Occurrence of Zn/Al hydrotalcite in smelter-impacted soils from northern France: Evidence from EXAFS spectroscopy and chemical extractions , 2003 .

[10]  R. Karplus,et al.  New Method for Determination of Manganese , 1946 .

[11]  Nicolas Geoffroy,et al.  Zinc mobility and speciation in soil covered by contaminated dredged sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction techniques , 2005 .

[12]  M. Burghammer,et al.  Structure of synthetic K-rich birnessite obtained by high-temperature decomposition of KMnO4. I. two-layer polytype from 800 °C experiment , 2003 .

[13]  A. D. Wadsley The structure of lithiophorite, (Al, Li)MnO2(OH)2 , 1952 .

[14]  J. P. Willis,et al.  Further observations on the composition of manganese nodules, with particular reference to some of the rarer elements , 1967 .

[15]  J. Hazemann,et al.  Adsorption mechanisms of Zn on hectorite as a function of time, pH, and ionic strength , 2001 .

[16]  A. I. Gorshkov,et al.  Mn-Fe oxyhydroxide crusts from Krylov Seamount (Eastern Atlantic): Mineralogy, geochemistry and genesis , 1991 .

[17]  D. Chateigner,et al.  Polarized EXAFS, distance-valence least-squares modeling (DVLS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite , 1998 .

[18]  A. Suzuki,et al.  Adsorption/Desorption of Lanthanides on Metal Oxides Interfaces , 1998 .

[19]  A. Bellanca,et al.  Trace metal partitioning in Fe–Mn nodules from Sicilian soils, Italy , 2001 .

[20]  M. Fleischer,et al.  The manganese oxide minerals, a preliminary report , 1943 .

[21]  A. I. Gorshkov,et al.  Peculiarities of manganese oxides in soils of the Russian plain , 2002 .

[22]  V. Drits,et al.  The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction , 1984, Clay Minerals.

[23]  R. Mitchell,et al.  Lithiophorite from charlottesville, virginia , 1967 .

[24]  Boon K. Teo,et al.  EXAFS: Basic Principles and Data Analysis , 1986 .

[25]  J. Ostwald Mineralogy of the Groote Eylandt manganese oxides : a review , 1988 .

[26]  D. Chateigner,et al.  Structural evidence for the sorption of Ni(II) atoms on the edges of montmorillonite clay minerals: A polarized X-ray absorption fine structure study , 2003 .

[27]  J. Hazemann,et al.  Quantitative Zn speciation in a contaminated dredged sediment by μ-PIXE, μ-SXRF, EXAFS spectroscopy and principal component analysis , 2002 .

[28]  Q. Feng,et al.  Structure of synthetic Na-birnessite: Evidence for a triclinic one-layer unit cell , 2002 .

[29]  A. I. Gorshkov,et al.  Iron and manganese oxide minerals in soils , 1981, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[30]  P. Buseck,et al.  Characterization of Cu in lithiophorite from a banded Mn ore , 1990 .

[31]  A. Koschinsky,et al.  Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation , 2003 .

[32]  J. Ostwald Two varieties of lithiophorite in some Australian deposits , 1984, Mineralogical Magazine.

[33]  Li Yuan-hui Interelement relationship in abyssal Pacific ferromanganese nodules and associated pelagic sediments , 1982 .

[34]  C. W. Childs Composition of iron-manganese concretions from some New Zealand soils , 1975 .

[35]  Z. Hseu,et al.  Saturation, Reduction, and Redox Morphology of Seasonally Flooded Alfisols in Taiwan , 1996 .

[36]  Nicolas Geoffroy,et al.  Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the Mississippi Basin. , 2003, Environmental science & technology.

[37]  D. Vaniman,et al.  Crystal chemistry of clay-Mn oxide associations in soils, fractures, and matrix of the Bandelier Tuff, Pajarito Mesa, New Mexico , 2002 .

[38]  A. Manceau,et al.  Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia , 1987 .

[39]  L R R O B E R T S,et al.  Zinc Speciation in a Smelter-Contaminated Soil Profile Using Bulk and Microspectroscopic Techniques , 2022 .

[40]  P. N. Gibson,et al.  XANES and Laser Fluorescence Spectroscopy for Rare Earth Speciation at Mineral-Water Interfaces , 1992 .

[41]  B. Dawson,et al.  Distribution of elements in some Fe-Mn nodules and an iron-pan in some gley soils of New Zealand , 1985 .

[42]  Z. Hseu,et al.  Quantifying Soil Hydromorphology of a Rice‐Growing Ultisol Toposequence in Taiwan , 2001 .

[43]  D. Schulze,et al.  Mineralogy of soils with unusually high exchangeable Al from the western Amazon Region , 2002, Clay Minerals.

[44]  Vrcron,et al.  Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite : I . Results from X-ray diffraction and selected-area electron diffraction , 2007 .

[45]  Q. Feng,et al.  Hydrothermal soft chemical reaction for formation of sandwich layered manganese oxide , 1999 .

[46]  A. I. Gorshkov,et al.  THE NATURE AND GENESIS OF LITHIOPHORITE , 1985 .

[47]  V. A. Solé,et al.  Crystal chemistry of trace elements in natural and synthetic goethite , 2000 .

[48]  S. Ferrari,et al.  Texture, residual stress and structural analysis of thin films using a combined X-ray analysis , 2004 .

[49]  K. J. Vetter,et al.  Potentialausbildung an der Mangandioxid-Elektrode als oxidelektrode mit nichtstöchiometrischem oxid☆ , 1966 .

[50]  M. Nomura,et al.  A new method for the determination of CeIII/CeIV ratios in geological materials; application for weathering, sedimentary and diagenetic processes , 2000 .

[51]  J. Torrent,et al.  Iron-related phosphorus in overfertilized European soils , 1997 .

[52]  G. A. Parks,et al.  Quantitative speciation of lead in selected mine tailings from Leadville, CO , 1999 .

[53]  E. Posr,et al.  Crystal structure refinement of lithiophorite , 2007 .

[54]  A. Manceau,et al.  Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite: I. Results from X-ray diffraction and selected-area electron diffraction , 1997 .

[55]  K. Poeppelmeier,et al.  Characterization of the Manganese Oxide Produced by Pseudomonas Putida Strain MnB1 , 2004 .

[56]  R. Mckenzie,et al.  The association of trace elements with manganese minerals in Australian soils , 1966 .

[57]  S. E. O'reilly,et al.  Lead Sorption Efficiencies of Natural and Synthetic Mn and Fe-oxides , 2002 .

[58]  Vrcron A. Dnrrsr,et al.  Structural mechanism of Co 2 * oxidation by the phyllomanganate buserite , 2007 .

[59]  J. Dixon,et al.  Minerals in soil environments , 1990 .

[60]  J. Richardson,et al.  Crystal structure of a pink muscovite from Archer's Post, Kenya; implications for reverse pleochroism in dioctahedral micas , 1982 .

[61]  Atsuyuki Ohta,et al.  REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2 , 2001 .

[62]  S. Driese,et al.  Pedogenic iron-manganese nodules in Vertisols: A new proxy for paleoprecipitation? , 2001 .

[63]  S. Kasten,et al.  RARE EARTH ELEMENTS IN MANGANESE NODULES FROM THE SOUTH ATLANTIC OCEAN AS INDICATORS OF OCEANIC BOTTOM WATER FLOW , 1998 .

[64]  A. Manceau,et al.  Structural mechanism of Co2+ oxidation by the phyllomanganate buserite , 1997 .

[65]  S. Sutton,et al.  Applications of Synchrotron Radiation in Low-Temperature Geochemistry and Environmental Science , 2002 .

[66]  Ruben Kretzschmar,et al.  Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil. , 2002, Environmental science & technology.

[67]  M. Stolt,et al.  Strongly Contrasting Redoximorphic Patterns in Virginia Valley and Ridge Paleosols , 1994 .

[68]  G. Uzochukwu,et al.  Managanese Oxide Minerals in Nodules of Two Soils of Texas and Alabama 1 , 1986 .

[69]  L. Denaix,et al.  Physical speciation of trace metals in Fe–Mn concretions from a rendzic lithosol developed on Sinemurian limestones (France) , 2001 .

[70]  Richard Celestre,et al.  Beamline 10.3.2 at ALS: a hard X-ray microprobe for environmental and materials sciences. , 2004, Journal of synchrotron radiation.

[71]  V. Asio,et al.  GENESIS OF INCEPTISOLS ON A VOLCANIC LANDSCAPE IN TAIWAN , 2001 .

[72]  B. Lanson,et al.  Structure of Synthetic K-Rich Birnessites Obtained by High-Temperature Decomposition of KMnO4. 2. Phase and Structural Heterogeneities , 2004 .

[73]  C. Fretigny,et al.  Polarized EXAFS of biotite and chlorite , 1988 .

[74]  Ryoji Funahashi,et al.  Thermoelectric properties–texture relationship in highly oriented Ca3Co4O9 composites , 2004 .

[75]  J. Muller,et al.  Structural characteristics of hematite and goethite and their relationships with kaolinite in a laterite from Cameroon : a TEM study , 1988 .

[76]  A. Manceau,et al.  Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides; Part II, information from EXAFS spectroscopy and electron and X-ray diffraction , 1992 .

[77]  Nicolas Geoffroy,et al.  Natural speciation of Zn at the micrometer scale in a clayey soil using X-ray fluorescence, absorption, and diffraction , 2004 .

[78]  A. Manceau,et al.  Structure of Mn and Fe oxides and oxyhydroxides: A topological approach by EXAFS , 1988 .

[79]  Matthew A. Marcus,et al.  Quantitative Speciation of Heavy Metals in Soils and Sediments by Synchrotron X-ray Techniques , 2002 .

[80]  E. Jonas The Clay Minerals Society , 1979, Elements.

[81]  Robert C. Reynolds,et al.  X-Ray Diffraction and the Identification and Analysis of Clay Minerals , 1989 .

[82]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[83]  Z. Hseu,et al.  TRANSITIONAL SOIL CHARACTERISTICS OF ULTISOLS AND SPODOSOLS IN THE SUBALPINE FOREST OF TAIWAN , 2004 .

[84]  G. H. Wagner,et al.  Base metals and other minor elements in the manganese deposits of west-central Arkansas , 1979 .

[85]  A. Manceau,et al.  Structure of heavy-metal sorbed birnessite: Part 1. Results from X-ray diffraction , 2002 .

[86]  L. The “ North American shale composite ” : Its compilation , major and trace element characteristics , 2002 .

[87]  R. Mckenzie The manganese oxides in soils - a review , 1972 .

[88]  M. Marcus,et al.  Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule , 2004 .

[89]  M. Rabenhorst,et al.  Quantifying Soil Hydromorphology , 1998 .

[90]  James B. Bean,et al.  Aluminum , 1867, The American journal of dental science.

[91]  J. Ostwald Ferruginous vernadite in an Indian Ocean ferromanganese nodule , 1984, Geological Magazine.

[92]  Peter J. Eng,et al.  Microfluorescence and Microtomography Analyses of Heterogeneous Earth and Environmental Materials , 2002 .

[93]  R. Mckenzie,et al.  The mineralogy and chemistry of manganese in some Australian soils , 1964 .

[94]  Ankudinov,et al.  Multiple-scattering calculations of x-ray-absorption spectra. , 1995, Physical review. B, Condensed matter.

[95]  A. Page Methods of soil analysis. Part 2. Chemical and microbiological properties. , 1982 .

[96]  E. H. Carlo,et al.  Rare-earth element geochemistry of ferromanganese crusts from the Hawaiian Archipelago, central Pacific☆☆☆ , 1992 .

[97]  J. Post,et al.  Crystal structure refinement of lithiophorite , 1994 .

[98]  Ming-kuang Wang,et al.  Characterization and a fast method for synthesis of sub-micron lithiophorite , 2003 .

[99]  L. Wilding,et al.  Albic Neoskeletans in Argillic Horizons as Indices of Seasonal Saturation and Iron Reduction , 1983 .

[100]  W. Huff X-ray Diffraction and the Identification and Analysis of Clay Minerals , 1990 .

[101]  J. Syers,et al.  Phosphate Chemistry in Lake Sediments , 1973 .

[102]  A. Manceau,et al.  Structure of heavy-metal sorbed birnessite: Part 2. Results from electron diffraction , 2002 .