An Holistic Extension for Classical Logic via Quantum Fredkin Gate

An holistic extension for classical propositional logic is introduced in the framework of quantum computation with mixed states. The mentioned extension is obtained by applying the quantum Fredkin gate to non-factorizable bipartite states. In particular, an extended notion of classical contradiction is studied in this holistic framework.

[1]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[2]  Vasily E. Tarasov Quantum computer with mixed states and four-valued logic , 2002 .

[3]  Lawrence S. Moss,et al.  Editors’ Introduction: The Third Life of Quantum Logic: Quantum Logic Inspired by Quantum Computing , 2013, J. Philos. Log..

[4]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[5]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[6]  Giuseppe Sergioli,et al.  FREDKIN AND TOFFOLI QUANTUM GATES: FUZZY REPRESENTATIONS AND COMPARISON , 2018, Probing the Meaning of Quantum Mechanics.

[7]  Stan Gudder,et al.  Quantum Computational Logic , 2003 .

[8]  Hector Freytes,et al.  Quantum computational logic with mixed states , 2010, Math. Log. Q..

[9]  Roberto Giuntini,et al.  Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics , 2010 .

[10]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[11]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[12]  Gustavo M. Bosyk,et al.  Quantum Information as a Non-Kolmogorovian Generalization of Shannon's Theory , 2015, Entropy.

[13]  R. Giuntini,et al.  Entanglement and Quantum Logical Gates. Part I. , 2015 .

[14]  Ján Jakubík,et al.  On Product MV-Algebras , 2002 .

[15]  Giuseppe Sergioli,et al.  Towards Quantum Computational Logics , 2010 .

[16]  Hector Freytes,et al.  Representing continuous t-norms in quantum computation with mixed states , 2010 .

[17]  R. Feynman Simulating physics with computers , 1999 .

[18]  Hector Freytes,et al.  Fuzzy approach to quantum Fredkin gate , 2018, J. Log. Comput..

[19]  Franco Montagna,et al.  An Algebraic Approach to Propositional Fuzzy Logic , 2000, J. Log. Lang. Inf..

[20]  Kerstin Vogler,et al.  Algebraic Foundations Of Many Valued Reasoning , 2016 .

[21]  Schlienz,et al.  Description of entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  Franco Montagna,et al.  Product logic and probabilistic Ulam games , 2007, Fuzzy Sets Syst..

[23]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[24]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.