Handling inverse optimal control problems using evolutionary bilevel optimization

Optimal control is a task where it is desired to determine the inputs of a dynamical system that optimize (minimize or maximize) a specified cost functional, also known as performance index, while satisfying any constraints on behaviour of the system. As the name suggests, inverse optimal control is the opposite of the former one and thus is associated with mining of the cost functional, optimal behaviour of which fits the given results best. In this paper, we present the importance of evolutionary bilevel optimization techniques as a promising approach to solve inverse optimal control problems. Generally, inverse optimal control problems are found to be ill posed which makes them computationally expensive in addition to the associated redundancy with the solution. Inverse optimal control theory works as a stepping stone in figuring out the underlying optimality criteria in a given task. It has several other applications in areas like Markov's Decision Processes and Game Theory. In our work, we solve inverse optimal control problems to retrieve the original functional in optimal control task using metaheuristic based bilevel optimization techniques. The dataset comprising of state variables generated from an optimal control problem is utilized to mine the functional. In the later part of our paper, we formulate a problem of human motion transfer as a bilevel optimization task, and subsequently solve it using a bilevel algorithm.

[1]  Emanuel Todorov,et al.  Inverse Optimal Control with Linearly-Solvable MDPs , 2010, ICML.

[2]  Panos M. Pardalos,et al.  Global optimization of concave functions subject to quadratic constraints: An application in nonlinear bilevel programming , 1992, Ann. Oper. Res..

[3]  G. Anandalingam,et al.  Genetic algorithm based approach to bi-level linear programming , 1994 .

[4]  Patrice Marcotte,et al.  A trust region algorithm for nonlinear bilevel programming , 2001, Oper. Res. Lett..

[5]  Peter Värbrand,et al.  A global optimization approach for the linear two-level program , 1993, J. Glob. Optim..

[6]  Mahyar A. Amouzegar,et al.  Determining optimal pollution control policies: An application of bilevel programming , 1999, Eur. J. Oper. Res..

[7]  S. Karbassi,et al.  Numerical solution of nonlinear optimal control problems based on state parametrization , 2014 .

[8]  L. N. Vicente,et al.  Descent approaches for quadratic bilevel programming , 1994 .

[9]  Jonathan F. Bard,et al.  Algorithms for nonlinear bilevel mathematical programs , 1991, IEEE Trans. Syst. Man Cybern..

[10]  Anind K. Dey,et al.  Maximum Entropy Inverse Reinforcement Learning , 2008, AAAI.

[11]  Eitaro Aiyoshi,et al.  HIERARCHICAL DECENTRALIZED SYSTEM AND ITS NEW SOLUTION BY A BARRIER METHOD. , 1980 .

[12]  Athanasios Migdalas,et al.  Bilevel programming in traffic planning: Models, methods and challenge , 1995, J. Glob. Optim..

[13]  George B.Richardson The Theory of the Market Economy. , 1995, Revue économique.

[14]  Jonathan F. Bard,et al.  An explicit solution to the multi-level programming problem , 1982, Comput. Oper. Res..

[15]  Wayne F. Bialas,et al.  Two-Level Linear Programming , 1984 .

[16]  Kalyanmoy Deb,et al.  Transportation policy formulation as a multi-objective bilevel optimization problem , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[17]  Sascha E. Engelbrecht,et al.  Minimum Principles in Motor Control. , 2001, Journal of mathematical psychology.

[18]  Feng-Yi Lin Robust Control Design: An Optimal Control Approach , 2007 .

[19]  M. Florian,et al.  ON THE GEOMETRIC STRUCTURE OF LINEAR BILEVEL PROGRAMS: A DUAL APPROACH , 1992 .

[20]  Kalyanmoy Deb,et al.  An improved bilevel evolutionary algorithm based on Quadratic Approximations , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[21]  Yafeng Yin,et al.  Genetic-Algorithms-Based Approach for Bilevel Programming Models , 2000 .

[22]  Kalyanmoy Deb,et al.  A bilevel optimization approach to automated parameter tuning , 2014, GECCO.

[23]  Helio J. C. Barbosa,et al.  Differential Evolution assisted by a surrogate model for bilevel programming problems , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[24]  Jean-Paul Laumond,et al.  From human to humanoid locomotion—an inverse optimal control approach , 2010, Auton. Robots.

[25]  Lorenz T. Biegler,et al.  Mathematical programs with equilibrium constraints (MPECs) in process engineering , 2003, Comput. Chem. Eng..

[26]  Jonathan F. Bard,et al.  A Branch and Bound Algorithm for the Bilevel Programming Problem , 1990, SIAM J. Sci. Comput..

[27]  Yafeng Yin,et al.  Multiobjective bilevel optimization for transportation planning and management problems , 2002 .

[28]  Kalyanmoy Deb,et al.  Efficient Evolutionary Algorithm for Single-Objective Bilevel Optimization , 2013, ArXiv.

[29]  R. Kevin Wood,et al.  Shortest‐path network interdiction , 2002, Networks.

[30]  José Fortuny-Amat,et al.  A Representation and Economic Interpretation of a Two-Level Programming Problem , 1981 .

[31]  Akbar Hashemi Borzabadi,et al.  A numerical method for solving optimal control problems using state parametrization , 2006, Numerical Algorithms.

[32]  E. Aiyoshi,et al.  A solution method for the static constrained Stackelberg problem via penalty method , 1984 .

[33]  M. Krstić,et al.  Stochastic nonlinear stabilization—II: inverse optimality , 1997 .

[34]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[35]  Gilles Savard,et al.  The steepest descent direction for the nonlinear bilevel programming problem , 1990, Oper. Res. Lett..

[36]  Ankur Sinha,et al.  Incorporating data envelopment analysis solution methods into bilevel multi-objective optimization , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[37]  K. Boubaker,et al.  A Numerical Approach for Solving Optimal Control Problems Using the Boubaker Polynomials Expansion Scheme , 2014 .

[38]  Michael Ulbrich,et al.  Imitating human reaching motions using physically inspired optimization principles , 2011, 2011 11th IEEE-RAS International Conference on Humanoid Robots.

[39]  Guoshan Liu,et al.  A trust region algorithm for bilevel programing problems , 1998 .

[40]  He-ping Ma,et al.  Chebyshev-Legendre method for discretizing optimal control problems , 2009 .

[41]  William R. Smith,et al.  Chemical Reaction Equilibrium Analysis: Theory and Algorithms , 1982 .

[42]  J. Herskovits,et al.  Contact shape optimization: a bilevel programming approach , 2000 .

[43]  Heinrich von Stackelberg,et al.  Stackelberg (Heinrich von) - The Theory of the Market Economy, translated from the German and with an introduction by Alan T. PEACOCK. , 1953 .

[44]  Michael Ulbrich,et al.  A bilevel optimization approach to obtain optimal cost functions for human arm movements , 2012 .

[45]  M. Patriksson,et al.  Stochastic bilevel programming in structural optimization , 2001 .

[46]  Arthur W. Westerberg,et al.  Bilevel programming for steady-state chemical process design , 1990 .

[47]  Richard L. Church,et al.  A bilevel mixed-integer program for critical infrastructure protection planning , 2008, Comput. Oper. Res..

[48]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[49]  Jerome Bracken,et al.  Defense Applications of Mathematical Programs with Optimization Problems in the Constraints , 1974, Oper. Res..

[50]  Kalyanmoy Deb,et al.  Multi-objective Stackelberg game between a regulating authority and a mining company: A case study in environmental economics , 2013, 2013 IEEE Congress on Evolutionary Computation.

[51]  Yuping Wang,et al.  An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[52]  Gerald G. Brown,et al.  Defending Critical Infrastructure , 2006, Interfaces.

[53]  Patrice Marcotte,et al.  A Trust-Region Method for Nonlinear Bilevel Programming: Algorithm and Computational Experience , 2005, Comput. Optim. Appl..

[54]  Martine Labbé,et al.  A Bilevel Model for Toll Optimization on a Multicommodity Transportation Network , 2000, Transp. Sci..

[55]  Moritz Tenorth,et al.  The TUM Kitchen Data Set of everyday manipulation activities for motion tracking and action recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[56]  Yuping Wang,et al.  A New Evolutionary Algorithm for a Class of Nonlinear Bilevel Programming Problems and Its Global Convergence , 2011, INFORMS J. Comput..

[57]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .

[58]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.